clc; clear; %设置八个幅值 A1=3;A2=8;A3=5;A4=2;A5=6;A6=7;A7=4;A8=1; %设置八个频率分量 f1=1;f2=2;f3=3;f4=4;f5=5;f6=6;f7=7;f8=8; %定义采样区间 x=0:0.001:8; %构建八个信号函数 y1=A1*sin(2*pi*f1*x).*(0<x&x<1); y2=A2*sin(2*pi*f2*x).*(1<x&x<3); y3=A3*sin(2*pi*f3*x).*(2<x&x<3); y4=A4*sin(2*pi*f4*x).*(2<x&x<4); y5=A5*sin(2*pi*f5*x).*(4<x&x<5); y6=A6*sin(2*pi*f6*x).*(5<x&x<6); y7=A7*sin(2*pi*f7*x).*(6<x&x<7); y8=A8*sin(2*pi*f8*x).*(0<x&x<8); %八个信号叠加求和构建非平稳信号函数 y=y1+y2+y3+y4+y5+y6+y7+y8;继续编写matlab代码,选用一个合适的小波画出y的时频能量图
时间: 2023-11-29 10:04:08 浏览: 125
可以使用小波变换来绘制非平稳信号的时频能量图。下面是使用MATLAB编写的代码:
```matlab
% 导入小波变换工具箱
import wavelet.*
% 小波变换参数设置
wname = 'db4'; % 选用 Daubechies 4 小波
level = 5; % 小波分解的层数
% 进行小波分解
[c, l] = wavedec(y, level, wname);
% 计算小波系数的能量
energy = zeros(level+1, length(y));
for i = 1:level+1
energy(i, :) = wrcoef('a', c, l, wname, i-1);
end
% 绘制时频能量图
t = 0:0.001:8;
figure;
imagesc(t, 1:level+1, energy);
colormap(jet);
xlabel('时间(秒)');
ylabel('尺度');
title('非平稳信号的时频能量图');
```
这段代码首先导入小波变换工具箱,然后选用 Daubechies 4 小波对信号进行五层小波分解,然后计算小波系数的能量,并绘制时频能量图。运行这段代码,就可以得到非平稳信号的时频能量图。
相关问题
clc; clear; %设置八个幅值 A1=3;A2=8;A3=5;A4=2;A5=6;A6=7;A7=4;A8=1; %设置八个频率分量 f1=1;f2=2;f3=3;f4=4;f5=5;f6=6;f7=7;f8=8; %定义采样区间 x=0:0.001:8; %构建八个信号函数 y1=A1*sin(2*pi*f1*x).*(0<x&x<1); y2=A2*sin(2*pi*f2*x).*(1<x&x<3); y3=A3*sin(2*pi*f3*x).*(2<x&x<3); y4=A4*sin(2*pi*f4*x).*(2<x&x<4); y5=A5*sin(2*pi*f5*x).*(4<x&x<5); y6=A6*sin(2*pi*f6*x).*(5<x&x<6); y7=A7*sin(2*pi*f7*x).*(6<x&x<7); y8=A8*sin(2*pi*f8*x).*(0<x&x<8); %八个信号叠加求和构建非平稳信号函数 y=y1+y2+y3+y4+y5+y6+y7+y8;继续使用matalb画出函数y的haar小波时频能量图
抱歉,我无法绘制图形,请您自行使用 MATLAB 绘制。您可以使用以下代码生成 y 的 Haar 小波时频能量图:
```matlab
% 对 y 进行小波分解,使用 5 层分解
[c, l] = wavedec(y, 5, 'haar');
% 初始化小波时频矩阵
w = zeros(length(c), length(y));
% 对每个小波系数进行小波包变换,得到小波时频矩阵
for i = 1:length(c)
w(i, :) = wpfbm(c(i), l, 'haar', length(y));
end
% 计算小波时频能量图
wt = w.^2;
imagesc(wt);
set(gca,'YDir','normal');
xlabel('Time (samples)');
ylabel('Frequency (Hz)');
colorbar;
title('Haar Wavelet Time-Frequency Energy Plot of y');
```
clear clc tic %%%%%%%%产生输入序列%%%%%%%% x=[1,1,0,1,1,0,1,0,1]; %initial value a1=-1.5; a2=0.7; b1=1.0; b2=0.5; c1=-0.8; c2=0.6; num=8000; %n为脉冲数目 M=[]; %存放M序列,其作为输入 for i=1:num temp=xor(x(4),x(9)); M(i)=x(9); for j=9:-1:2 x(j)=x(j-1); end x(1)=temp; end u=M; %%%%%%%%产生噪声序列%%%%%%%% v=randn(1,num); e(1)=0; e(2)=0; for i=3:num e(i)=v(i)+c1*v(i-1)+c2*v(i-2); end %%%%%%%%产生观测序列%%%%%%%% z=zeros(num,1); z(1)=0; z(2)=0; for i=3:num z(i)=-a1*z(i-1)-a2*z(i-2)+b1*u(i-1)+b2*u(i-2)+e(i); end %%%%%%%%设置初始值%%%%%%%% P=100*eye(4); Theta=zeros(4,num); x(1)=0; x(2)=0; for i=3:num H=[-z(i-1);-z(i-2);u(i-1);u(i-2)]; H_SA=[-x(i-1);-x(i-2);u(i-1);u(i-2)]; K=P*H_SA/(1+H'*P*H_SA); Theta(:,i)=Theta(:,i-1)+K*(z(i)-H'*Theta(:,i-1)); P=(eye(4)-K*H')*P; x(i)=H_SA'*Theta(:,i); end figure(1) plot(Theta(1,:),'b'); hold on plot(Theta(2,:),'r'); plot(Theta(3,:),'k'); plot(Theta(4,:),'g'); legend('a1','a2','b1','b2'); hold off
根据你提供的代码,这段代码是用MATLAB实现了一个基于最小二乘法的参数估计算法。该算法用于估计线性系统的参数,通过观测序列和输入序列来求解系统的参数。
代码的主要步骤如下:
1. 生成输入序列 M,这里使用了一个带有反馈的移位寄存器来产生 M 序列。
2. 生成噪声序列 v,使用 randn 函数生成均值为0、方差为1的高斯噪声。
3. 生成观测序列 z,通过线性系统的差分方程来计算 z 的值。
4. 设置初始值 P 和 Theta,P 是协方差矩阵,Theta 是参数估计值。
5. 进行递推计算,通过递推公式来更新参数估计值和协方差矩阵。
6. 绘制参数估计结果的图像。
最后,通过绘制图像可以看到参数 a1、a2、b1、b2 的估计结果。
请注意,这段代码仅是一个例子,具体应用中可能需要根据实际情况进行修改和调整。
阅读全文