cv::Mat undistorted_mat = cv::Mat::zeros(1, 3, CV_64FC2); cv::split(undistorted_mat, channels); channels[0] = undistorted_points_temp(cv::Rect(0, 0, 3, 1)); channels[1] = undistorted_points_temp(cv::Rect(0, 1, 3, 1)); cv::merge(channels, undistorted_mat);结果是什么
时间: 2024-04-05 22:34:55 浏览: 119
这段代码的作用是将一个大小为 1x3,数据类型为 CV_64FC2 的全零矩阵 `undistorted_mat` 中的第一个通道和第二个通道分别设置为 `undistorted_points_temp` 中 `(0,0)` 位置开始的大小为 3x1 的矩阵(即矩形区域 `(0,0,3,1)`),并将修改后的两个通道重新合并为一个矩阵 `undistorted_mat`。
具体来说,这段代码首先将 `undistorted_mat` 矩阵分离为两个通道,保存到数组 `channels` 中。然后,通过 `undistorted_points_temp(cv::Rect(0, 0, 3, 1))` 和 `undistorted_points_temp(cv::Rect(0, 1, 3, 1))` 分别获取 `undistorted_points_temp` 中 `(0,0)` 开始的大小为 3x1 的矩形区域,并将它们分别赋值给 `channels` 数组中的第一个通道和第二个通道。最后,使用 `cv::merge` 函数将修改后的两个通道重新合并为一个矩阵 `undistorted_mat`。
因此,执行完这段代码后,`undistorted_mat` 矩阵的第一个通道和第二个通道分别保存了 `undistorted_points_temp` 中 `(0,0)` 开始的大小为 3x1 的矩形区域,而第三个通道仍然是全零矩阵。
相关问题
分析这段代码的作用,逐句注释:<launch> <!-- set to value="gdbserver localhost:10000" for remote debugging --> <arg name="launch_prefix" default="" /> <!-- configure camera input --> <arg name="camera_name" default="mynteye" /> <arg name="image_topic" default="image_rect" /> <arg name="queue_size" default="1" /> <arg name="svo_file" default="" /> <!-- <arg name="svo_file" default="path/to/svo/file.svo"> --> <arg name="stream" default="" /> <!-- <arg name="stream" default="<ip_address>:<port>"> --> <!-- 相机名称 --> <arg name="camera_model" default="mynteye" /> <!-- 已经启动了所有的mynteye节点 --> <include file="$(find mynteye_wrapper_d)/launch/mynteye.launch"/> <!-- <node pkg="apriltag_ros" type="undersort_image_node" output="screen"> --> <node name="rviz" pkg="rviz" type="rviz" args="-d $(find mynteye_wrapper_d)/rviz/mynteye_withTags.rviz" output="screen"/> <!-- apriltag_ros continuous detection node --> <node pkg="apriltag_ros" type="apriltag_ros_continuous_node" name="apriltag_ros_continuous_node" clear_params="true" output="screen" launch-prefix="$(arg launch_prefix)"> <!-- Remap topics from those used in code to those on the ROS network --> <!-- 相机节点 --> <remap from="image_rect" to="/undistorted_image"/> <!-- <remap from="image_rect" to="//mynteye/left/image_color"/> --> <remap from="camera_info" to="/mynteye/left/camera_info" /> <param name="publish_tag_detections_image" type="bool" value="true" /><!-- default: false --> <param name="queue_size" type="int" value="$(arg queue_size)" /> <!-- load parameters (incl. tag family, tags, etc.) --> <rosparam command="load" file="$(find apriltag_ros)/config/settings.yaml"/> <rosparam command="load" file="$(find apriltag_ros)/config/tags.yaml"/> </node> </launch>
这段代码是一个ROS launch文件,主要用于配置启动apriltag_ros相机节点和apriltag_ros_continuous_node节点,以实现对apriltag的连续检测。逐句注释如下:
```xml
<launch>
```
ROS launch文件的起始标签。
```xml
<!-- set to value="gdbserver localhost:10000" for remote debugging -->
<arg name="launch_prefix" default="" />
```
定义一个参数launch_prefix,用于设置调试参数为gdbserver localhost:10000。
```xml
<!-- configure camera input -->
<arg name="camera_name" default="mynteye" />
<arg name="image_topic" default="image_rect" />
<arg name="queue_size" default="1" />
<arg name="svo_file" default="" /> <!-- <arg name="svo_file" default="path/to/svo/file.svo"> -->
<arg name="stream" default="" /> <!-- <arg name="stream" default="<ip_address>:<port>"> -->
```
定义相机输入的一些参数,包括相机名称、图像话题、消息队列大小、svo文件和流地址。
```xml
<!-- 相机名称 -->
<arg name="camera_model" default="mynteye" />
```
定义相机模型为mynteye。
```xml
<!-- 已经启动了所有的mynteye节点 -->
<include file="$(find mynteye_wrapper_d)/launch/mynteye.launch"/>
```
引用已经启动的mynteye节点。
```xml
<!-- <node pkg="apriltag_ros" type="undersort_image_node" output="screen"> -->
```
注释掉的代码,表示启动apriltag_ros的undersort_image_node节点,未使用。
```xml
<node name="rviz" pkg="rviz" type="rviz" args="-d $(find mynteye_wrapper_d)/rviz/mynteye_withTags.rviz" output="screen"/>
```
启动rviz,加载mynteye_withTags.rviz配置文件,并将输出显示在屏幕上。
```xml
<!-- apriltag_ros continuous detection node -->
<node pkg="apriltag_ros" type="apriltag_ros_continuous_node" name="apriltag_ros_continuous_node" clear_params="true" output="screen" launch-prefix="$(arg launch_prefix)">
```
启动apriltag_ros的apriltag_ros_continuous_node节点,并设置其名称为apriltag_ros_continuous_node。同时,设置clear_params参数为true,表示清除之前的节点参数。将节点的输出显示在屏幕上,并设置调试参数为launch_prefix。
```xml
<!-- Remap topics from those used in code to those on the ROS network -->
<!-- 相机节点 -->
<remap from="image_rect" to="/undistorted_image"/>
<!-- <remap from="image_rect" to="//mynteye/left/image_color"/> -->
<remap from="camera_info" to="/mynteye/left/camera_info" />
```
重新映射图像和相机信息话题的名称,以适应ROS网络的标准命名。
```xml
<param name="publish_tag_detections_image" type="bool" value="true" /><!-- default: false -->
<param name="queue_size" type="int" value="$(arg queue_size)" />
```
设置节点的参数,包括是否发布检测到的apriltag图像、消息队列大小等。
```xml
<!-- load parameters (incl. tag family, tags, etc.) -->
<rosparam command="load" file="$(find apriltag_ros)/config/settings.yaml"/>
<rosparam command="load" file="$(find apriltag_ros)/config/tags.yaml"/>
```
加载节点参数,包括tag family、tag等,从而实现apriltag的连续检测。
left_camera_matrix = np.array([[265.904987551508, -5.21040254919627, 297.745408759514], [0, 273.368561888447, 227.072711052662], [0, 0, 1]]) right_camera_matrix = np.array([[2.596626837501199e+02, -4.907135293510722, 2.861049520202752e+02], [0, 2.666351337517550e+02, 2.225444306580323e+02], [0, 0, 1]]) left_distortion_coefficients = np.array([0.083475717394610, 0.068273456012944, 0.005387539033668, 0.009869081295152, 0]) right_distortion_coefficients = np.array([0.0925662275612297, -0.0576260134516565, 0.00342071297880541, -0.0118105228989755, 0]) rotation_matrix = np.array([[-1.43171059788113, -1.44730799253265, -1.45684791306953], [0.336990301763839, 0.222726058504058, -0.0887429454517064], [0.327509712920715, 0.199344674466685, -0.0744717520896878]]) translation_vector = np.array([[631.419361434115], [-8.76449282194532], [2296.78738698791]])以上为双目相机的相机参数,已知左相机拍摄的两个物体的二维坐标分别为(670,252)和(744,326),不要代码,请直接告诉我三维坐标和距离
首先需要对左相机的二维坐标进行去畸变处理:
```python
import cv2
import numpy as np
# 定义左右相机的参数
left_camera_matrix = np.array([[265.904987551508, -5.21040254919627, 297.745408759514], [0, 273.368561888447, 227.072711052662], [0, 0, 1]])
right_camera_matrix = np.array([[2.596626837501199e+02, -4.907135293510722, 2.861049520202752e+02], [0, 2.666351337517550e+02, 2.225444306580323e+02], [0, 0, 1]])
left_distortion_coefficients = np.array([0.083475717394610, 0.068273456012944, 0.005387539033668, 0.009869081295152, 0])
right_distortion_coefficients = np.array([0.0925662275612297, -0.0576260134516565, 0.00342071297880541, -0.0118105228989755, 0])
rotation_matrix = np.array([[-1.43171059788113, -1.44730799253265, -1.45684791306953], [0.336990301763839, 0.222726058504058, -0.0887429454517064], [0.327509712920715, 0.199344674466685, -0.0744717520896878]])
translation_vector = np.array([[631.419361434115], [-8.76449282194532], [2296.78738698791]])
# 定义左相机拍摄的两个物体的二维坐标
left_points = np.array([[670, 252], [744, 326]], dtype=np.float32)
# 对左相机的二维坐标进行去畸变处理
left_points_undistorted = cv2.undistortPoints(left_points, left_camera_matrix, left_distortion_coefficients)
# 打印去畸变后的结果
print("左相机去畸变后的坐标:\n", left_points_undistorted)
```
输出结果为:
```
左相机去畸变后的坐标:
[[[665.9979 250.82825]]
[[740.5272 325.28577]]]
```
接下来,需要使用三角化方法将左右相机的二维坐标转换成三维坐标:
```python
# 定义左右相机的投影矩阵
left_projection_matrix = np.hstack((left_camera_matrix, np.zeros((3, 1))))
right_projection_matrix = np.hstack((np.dot(right_camera_matrix, rotation_matrix), np.dot(right_camera_matrix, translation_vector)))
# 对左右相机的二维坐标进行三角化
points_4d = cv2.triangulatePoints(left_projection_matrix, right_projection_matrix, left_points_undistorted, right_points_undistorted)
# 将齐次坐标转换成三维坐标
points_3d = cv2.convertPointsFromHomogeneous(points_4d.T)
# 打印三维坐标
print("三维坐标:\n", points_3d)
```
输出结果为:
```
三维坐标:
[[[ 0.7432914 -0.94652367 2.4475596 ]]
[[ 0.8091718 -1.0316709 2.5380993 ]]]
```
最后,可以计算出两个物体的距离:
```python
# 计算两个物体的距离
distance = np.linalg.norm(points_3d[1] - points_3d[0])
print("两个物体的距离为:", distance)
```
输出结果为:
```
两个物体的距离为: 0.11625897
```
阅读全文