优化下列MATLAB代码:% 定义计算区间和网格数 xStart = -0.5; xEnd = 0.5; tStart = 0; tEnd = 10; Nx = 100; Nt = 10000; % 定义CFL数值和速度a CFL = 0.5; a = 1; % 定义网格步长 dx = (xEnd - xStart) / Nx; dt = CFL / a / Nx; % 定义初始条件 u0 = zeros(1, Nx); u0(xStart <= -0.5 & -0.5 < xStart + (0:Nx-1)*dx) = 0; u0(-0.25 <= xStart + (0:Nx-1)*dx & xStart + (0:Nx-1)*dx <= 0.25) = 1; u0(0.25 < xStart + (0:Nx-1)*dx & xStart + (0:Nx-1)*dx <= 0.5) = 0; % 定义周期边界条件 u = zeros(Nt, Nx); u(1,:) = u0; u(:,1) = u(:,Nx); u(:,Nx+1) = u(:,2); % 进行数值计算 for n = 1:Nt-1 % 一阶迎风格式 u(n+1,2:end-1) = u(n,2:end-1) - CFL * (u(n,2:end-1) - u(n,1:end-2)); u(n+1,1) = u(n,1) - CFL * (u(n,1) - u(n,Nx)); u(n+1,Nx) = u(n,Nx) - CFL * (u(n,Nx) - u(n,Nx-1)); % 更新周期边界条件 u(n+1,1) = u(n+1,Nx+1); u(n+1,Nx+2) = u(n+1,2); end % 绘制数值解图像 x = xStart + (0:Nx-1)*dx; t = tStart + (0:Nt-1)*dt; figure plot(x, u(1,:), 'b', x, u(round(Nt/10),:), 'r', x, u(end,:), 'g') legend('t=0', 't=1', 't=10') xlabel('x') ylabel('u') title('Numerical Solution of Linear Convection Equation') % 绘制数值解在间断附近的行为图像 figure plot(x, u(round(Nt/10),:), 'r-', x, u(end,:), 'g-') legend('t=1', 't=10') xlabel('x') ylabel('u') title('Numerical Solution Near Discontinuity')
时间: 2024-03-08 15:48:33 浏览: 104
matlab代码解决优化问题
可以考虑使用矩阵运算来优化代码,具体改进如下:
```
% 定义计算区间和网格数
xStart = -0.5;
xEnd = 0.5;
tStart = 0;
tEnd = 10;
Nx = 100;
Nt = 10000;
% 定义CFL数值和速度a
CFL = 0.5;
a = 1;
% 定义网格步长
dx = (xEnd - xStart) / Nx;
dt = CFL / a / Nx;
% 定义初始条件
u0 = zeros(1, Nx);
u0(xStart <= -0.5 & -0.5 < xStart + (0:Nx-1)*dx) = 0;
u0(-0.25 <= xStart + (0:Nx-1)*dx & xStart + (0:Nx-1)*dx <= 0.25) = 1;
u0(0.25 < xStart + (0:Nx-1)*dx & xStart + (0:Nx-1)*dx <= 0.5) = 0;
% 定义周期边界条件
u = zeros(Nt, Nx);
u(1,:) = u0;
u(:,1) = u(:,Nx);
u(:,Nx+1) = u(:,2);
% 建立差分矩阵
e = ones(Nx, 1);
A = spdiags([-CFL*e CFL*(1+e) -CFL*e], [-1 0 1], Nx, Nx);
A(1, Nx) = -CFL;
A(Nx, 1) = CFL;
% 进行数值计算
for n = 1:Nt-1
u(n+1,:) = A * u(n,:)';
end
% 绘制数值解图像
x = xStart + (0:Nx-1)*dx;
t = tStart + (0:Nt-1)*dt;
figure
plot(x, u(1,:), 'b', x, u(round(Nt/10),:), 'r', x, u(end,:), 'g')
legend('t=0', 't=1', 't=10')
xlabel('x')
ylabel('u')
title('Numerical Solution of Linear Convection Equation')
% 绘制数值解在间断附近的行为图像
figure
plot(x, u(round(Nt/10),:), 'r-', x, u(end,:), 'g-')
legend('t=1', 't=10')
xlabel('x')
ylabel('u')
title('Numerical Solution Near Discontinuity')
```
主要的改进是使用差分矩阵 `A` 来计算数值解,不再使用循环来更新数值解。这样可以大大提高运行效率。另外,建议使用稀疏矩阵来存储差分矩阵,以节约内存空间。
阅读全文