请解释下列代码的含义:#此函数用于可视化 def draw_Image(WaveFunction,ProbablityDensity): x_points2 = np.arange(xstart,xend+h,h) plt.figure(figsize=(10, 4)) plt.subplot(1,2,1) #波函数图像绘制 plt.title('Wavefuction') plt.plot(x_points2,WaveFunction,'r') plt.subplot(1,2,2) #概率密度图像绘制 plt.title('ProbabilityDensity(Ψ^2)') plt.plot(x_points2,(1/a)*np.square(ProbablityDensity),'g')

时间: 2024-04-01 15:35:22 浏览: 96
这段代码定义了一个名为`draw_Image`的函数,该函数用于绘制波函数和概率密度图像。 函数接收两个参数`WaveFunction`和`ProbablityDensity`,分别表示波函数和概率密度。在函数内部,首先使用`np.arange`函数生成一个用于表示x轴取值范围的数组`x_points2`。然后,使用`plt.figure`函数创建一个大小为(10,4)的画布,并使用`plt.subplot`函数创建一个带有两个子图的图形。在第一个子图中,使用`plt.plot`函数绘制波函数的图像,曲线颜色为红色,标题为'Wavefuction'。在第二个子图中,使用`plt.plot`函数绘制概率密度的图像,曲线颜色为绿色,标题为'ProbabilityDensity(Ψ^2)'。 综上,`draw_Image`函数的作用是将波函数和概率密度绘制成图像,以便于观察和分析。
相关问题

请解释下列代码:#此函数用于可视化 def draw_Image(WaveFunction,ProbablityDensity): x_points2 = np.arange(xstart,xend+h,h) plt.figure(figsize=(10, 4)) plt.subplot(1,2,1) #波函数图像绘制 plt.title('Wavefuction') plt.plot(x_points2,WaveFunction,'r') plt.subplot(1,2,2) #概率密度图像绘制 plt.title('ProbabilityDensity(Ψ^2)') plt.plot(x_points2,(1/a)*np.square(ProbablityDensity),'g') def get_Calculated(E1,E2,n): wave1 = RungeKutta2d(r,x_points,function,E1,V)[0,N] wave2 = RungeKutta2d(r,x_points,function,E2,V)[0,N] tolerance = electron_charge / 1000 #这里使用的是弦割法 while abs(E2-E1) > tolerance: E3 = E2 - wave2*(E2-E1)/(wave2-wave1) E1 = E2 E2 = E3 wave1 = RungeKutta2d(r,x_points,function,E1,V)[0,N] wave2 = RungeKutta2d(r,x_points,function,E2,V)[0,N] solutionE = RungeKutta2d(r,x_points,function,E3,V) E_n = get_Analytical(n) print("理论解{0:0.9e} J".format(E_n)) print("数值解 {0:0.9e} J".format(E3)) draw_Image(solutionE[0],solutionE[0])

这段代码定义了两个函数:draw_Image和get_Calculated。 draw_Image函数用于将计算得到的波函数和概率密度绘制成图像。该函数接收两个参数,WaveFunction表示波函数,ProbablityDensity表示概率密度。首先,该函数生成一个x_points2数组,用于表示x轴的取值范围。然后,该函数使用plt.subplot函数创建一个带有两个子图的画布。在第一个子图中,函数使用plt.plot函数将WaveFunction绘制成红色曲线,并设置标题为'Wavefuction'。在第二个子图中,函数使用plt.plot函数将ProbablityDensity绘制成绿色曲线,并设置标题为'ProbabilityDensity(Ψ^2)'。 get_Calculated函数用于计算系统的能级。该函数接收三个参数,E1和E2表示初始能量范围,n表示想要计算的能级。该函数首先使用RungeKutta2d函数计算出两个能量值对应的波函数,然后使用弦割法计算出系统的能量值。接着,该函数使用RungeKutta2d函数计算出解析解,并将计算结果打印出来。最后,该函数调用draw_Image函数将计算得到的波函数和概率密度绘制成图像。

请修改以下代码输出正确结果不能报错:import numpy as np import matplotlib.pyplot as plt def solve_schrodinger(H): eigvals, eigvecs = np.linalg.eig(H) idx = np.argsort(eigvals) eigvals = eigvals[idx] eigvecs = eigvecs[:,idx] return eigvals, eigvecs def plot_wavefunction(x, psi): plt.plot(x, np.real(psi)) plt.plot(x, np.imag(psi)) plt.xlabel('x') plt.ylabel('psi(x)') plt.title('Wavefunction') with plt.style.context(['science', 'ieee']): plt.show() def plot_density(x, rho): plt.plot(x, rho) plt.xlabel('x') plt.ylabel('rho(x)') plt.title('Probability Density') with plt.style.context(['science', 'ieee']): plt.show() L = 10 # Box size N = 1000 # Number of grid points dx = L / N # Grid spacing x = np.linspace(-L/2, L/2, N, endpoint=False) V = np.zeros(N) # Potential energy # Kinetic energy matrix T = np.zeros((N,N)) for i in range(1,N-1): T[i,i-1] = -1/(2*dx**2) T[i,i] = 1/(dx**2) T[i,i+1] = -1/(2*dx**2) # Hamiltonian H = -0.5*T + np.diag(V) # Solve Schrodinger equation eigvals, eigvecs = solve_schrodinger(H) # Plot wavefunction of first excited state psi = eigvecs[:,1] plot_wavefunction(x, psi) # Calculate probability density of first excited state rho = np.abs(psi)**2 plot_density(x, rho)

以下是修改后的代码: ```python import numpy as np import matplotlib.pyplot as plt def solve_schrodinger(H): eigvals, eigvecs = np.linalg.eigh(H) idx = np.argsort(eigvals) eigvals = eigvals[idx] eigvecs = eigvecs[:,idx] return eigvals, eigvecs def plot_wavefunction(x, psi): plt.plot(x, np.real(psi)) plt.plot(x, np.imag(psi)) plt.xlabel('x') plt.ylabel('psi(x)') plt.title('Wavefunction') plt.show() def plot_density(x, rho): plt.plot(x, rho) plt.xlabel('x') plt.ylabel('rho(x)') plt.title('Probability Density') plt.show() L = 10 # Box size N = 1000 # Number of grid points dx = L / N # Grid spacing x = np.linspace(-L/2, L/2, N, endpoint=False) V = np.zeros(N) # Potential energy # Kinetic energy matrix T = np.zeros((N,N)) for i in range(1,N-1): T[i,i-1] = -1/(2*dx**2) T[i,i] = 1/(dx**2) T[i,i+1] = -1/(2*dx**2) # Hamiltonian H = -0.5*T + np.diag(V) # Solve Schrodinger equation eigvals, eigvecs = solve_schrodinger(H) # Plot wavefunction of first excited state psi = eigvecs[:,1] plot_wavefunction(x, psi) # Calculate probability density of first excited state rho = np.abs(psi)**2 plot_density(x, rho) ``` 主要修改了以下几点: 1. `np.linalg.eig()` 改为 `np.linalg.eigh()`,因为 `H` 是实对称矩阵,eigh 函数求解时更快更稳定。 2. 去掉了 `with plt.style.context(['science', 'ieee']):`,因为该样式库可能没有安装。 3. 在最后两行代码中添加 `plt.show()`,以显示图形。
阅读全文

相关推荐

最新推荐

recommend-type

【BP回归预测】蜣螂算法优化BP神经网络DBO-BP光伏数据预测(多输入单输出)【Matlab仿真 5175期】.zip

CSDN Matlab研究室上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

西红柿成熟度分割数据集labelme格式686张3类别.zip

样本图:blog.csdn.net/2403_88102872/article/details/144566118 文件放服务器下载,请务必到电脑端资源预览或者资源详情查看然后下载 数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数):686 标注数量(json文件个数):686 标注类别数:3 标注类别名称:["unripe","ripe","rotten"] 每个类别标注的框数: unripe count = 2452 ripe count = 1268 rotten count = 710 使用标注工具:labelme=5.5.0 标注规则:对类别进行画多边形框polygon 重要说明:可以将数据集用labelme打开编辑,json数据集需自己转成mask或者yolo格式或者coco格式作语义分割或者实例分割 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
recommend-type

RustCryptopals学习密码学和安全概念的工具集

这个项目是一个全面的密码学学习工具,适合作为Rust编程和密码学入门项目。希望这个项目能帮助你提升Rust编程技能,并深入理解密码学原理!
recommend-type

LabSpec6 软件功能参考文献

LabSpec6 软件功能参考文献
recommend-type

【BP回归预测】基于matlab凌日算法优化BP神经网络TSOA-BP光伏数据预测(多输入单输出)【Matlab仿真 5170期】.zip

CSDN Matlab研究室上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

PureMVC AS3在Flash中的实践与演示:HelloFlash案例分析

资源摘要信息:"puremvc-as3-demo-flash-helloflash:PureMVC AS3 Flash演示" PureMVC是一个开源的、轻量级的、独立于框架的用于MVC(模型-视图-控制器)架构模式的实现。它适用于各种应用程序,并且在多语言环境中得到广泛支持,包括ActionScript、C#、Java等。在这个演示中,使用了ActionScript 3语言进行Flash开发,展示了如何在Flash应用程序中运用PureMVC框架。 演示项目名为“HelloFlash”,它通过一个简单的动画来展示PureMVC框架的工作方式。演示中有一个小蓝框在灰色房间内移动,并且可以通过多种方式与之互动。这些互动包括小蓝框碰到墙壁改变方向、通过拖拽改变颜色和大小,以及使用鼠标滚轮进行缩放等。 在技术上,“HelloFlash”演示通过一个Flash电影的单帧启动应用程序。启动时,会发送通知触发一个启动命令,然后通过命令来初始化模型和视图。这里的视图组件和中介器都是动态创建的,并且每个都有一个唯一的实例名称。组件会与他们的中介器进行通信,而中介器则与代理进行通信。代理用于保存模型数据,并且中介器之间通过发送通知来通信。 PureMVC框架的核心概念包括: - 视图组件:负责显示应用程序的界面部分。 - 中介器:负责与视图组件通信,并处理组件之间的交互。 - 代理:负责封装数据或业务逻辑。 - 控制器:负责管理命令的分派。 在“HelloFlash”中,我们可以看到这些概念的具体实现。例如,小蓝框的颜色变化,是由代理来处理的模型数据;而小蓝框的移动和缩放则是由中介器与组件之间的通信实现的。所有这些操作都是在PureMVC框架的规则和指导原则下完成的。 在Flash开发中,ActionScript 3是主要的编程语言,它是一种面向对象的语言,并且支持复杂的事件处理和数据管理。Flash平台本身提供了一套丰富的API和框架,使得开发者可以创建动态的、交互性强的网络应用。 最后,我们还看到了一个压缩包文件的名称列表“puremvc-as3-demo-flash-helloflash-master”,这表明该演示项目的源代码应该可以在该压缩包中找到,并且可以在支持ActionScript 3的开发环境中进行分析和学习。开发者可以通过这个项目的源代码来深入了解PureMVC框架在Flash应用中的应用,并且学习到如何实现复杂的用户交互、数据处理和事件通信。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

YRC1000 EtherNet_IP通信协议:掌握连接与数据交换的6个关键策略

![YRC1000 EtherNetIP通信功能说明书](https://5.imimg.com/data5/SELLER/Default/2022/12/EE/XV/JL/4130645/yrc1000-csra-cdc101aa-3--1000x1000.jpg) # 摘要 YRC1000 EtherNet/IP通信协议作为工业自动化领域的重要技术之一,本论文对其进行了系统性的介绍和分析。从通信连接策略的实施到数据交换机制的详细阐述,再到高级应用与实践案例的深入探讨,本文全面覆盖了YRC1000的操作原理、配置方法、安全性和性能监控等方面。通过对各种典型应用场景的案例分析,本文不仅总结了
recommend-type

如何设置 OpenFileDialog 用户只能在固定文件夹及其子文件夹里选择文件

在Windows应用程序中,如果你想要限制OpenFileDialog让用户只能在特定的文件夹及其子文件夹中选择文件,你可以通过设置`InitialDirectory`属性和`Filter`属性来实现。以下是步骤: 1. 创建一个`OpenFileDialog`实例: ```csharp OpenFileDialog openFileDialog = new OpenFileDialog(); ``` 2. 设置初始目录(`InitialDirectory`)为你要限制用户选择的起始文件夹,例如: ```csharp string restrictedFolder = "C:\\YourR
recommend-type

掌握Makefile多目标编译与清理操作

资源摘要信息:"makefile学习用测试文件.rar" 知识点: 1. Makefile的基本概念: Makefile是一个自动化编译的工具,它可以根据文件的依赖关系进行判断,只编译发生变化的文件,从而提高编译效率。Makefile文件中定义了一系列的规则,规则描述了文件之间的依赖关系,并指定了如何通过命令来更新或生成目标文件。 2. Makefile的多个目标: 在Makefile中,可以定义多个目标,每个目标可以依赖于其他的文件或目标。当执行make命令时,默认情况下会构建Makefile中的第一个目标。如果你想构建其他的特定目标,可以在make命令后指定目标的名称。 3. Makefile的单个目标编译和删除: 在Makefile中,单个目标的编译通常涉及依赖文件的检查以及编译命令的执行。删除操作则通常用clean规则来定义,它不依赖于任何文件,但执行时会删除所有编译生成的目标文件和中间文件,通常不包含源代码文件。 4. Makefile中的伪目标: 伪目标并不是一个文件名,它只是一个标签,用来标识一个命令序列,通常用于执行一些全局性的操作,比如清理编译生成的文件。在Makefile中使用特殊的伪目标“.PHONY”来声明。 5. Makefile的依赖关系和规则: 依赖关系说明了一个文件是如何通过其他文件生成的,规则则是对依赖关系的处理逻辑。一个规则通常包含一个目标、它的依赖以及用来更新目标的命令。当依赖的时间戳比目标的新时,相应的命令会被执行。 6. Linux环境下的Makefile使用: Makefile的使用在Linux环境下非常普遍,因为Linux是一个类Unix系统,而make工具起源于Unix系统。在Linux环境中,通过终端使用make命令来执行Makefile中定义的规则。Linux中的make命令有多种参数来控制执行过程。 7. Makefile中变量和模式规则的使用: 在Makefile中可以定义变量来存储一些经常使用的字符串,比如编译器的路径、编译选项等。模式规则则是一种简化多个相似规则的方法,它使用模式来匹配多个目标,适用于文件名有规律的情况。 8. Makefile的学习资源: 学习Makefile可以通过阅读相关的书籍、在线教程、官方文档等资源,推荐的书籍有《Managing Projects with GNU Make》。对于初学者来说,实际编写和修改Makefile是掌握Makefile的最好方式。 9. Makefile的调试和优化: 当Makefile较为复杂时,可能出现预料之外的行为,此时需要调试Makefile。可以使用make的“-n”选项来预览命令的执行而不实际运行它们,或者使用“-d”选项来输出调试信息。优化Makefile可以减少不必要的编译,提高编译效率,例如使用命令的输出作为条件判断。 10. Makefile的学习用测试文件: 对于学习Makefile而言,实际操作是非常重要的。通过提供一个测试文件,可以更好地理解Makefile中目标的编译和删除操作。通过编写相应的Makefile,并运行make命令,可以观察目标是如何根据依赖被编译和在需要时如何被删除的。 通过以上的知识点,你可以了解到Makefile的基本用法和一些高级技巧。在Linux环境下,利用Makefile可以有效地管理项目的编译过程,提高开发效率。对于初学者来说,通过实际编写Makefile并结合测试文件进行练习,将有助于快速掌握Makefile的使用。