def gradient(self, trainX: np.ndarray, trainY: np.ndarray)->np.ndarray: ''' Compute gradient of logistic regression. Parameters: trainX is the training data input. trainX is a two two dimensional numpy array. trainY is the training data label. trainY is a one dimensional numpy array. Return: a one dimensional numpy array representing the gradient ''' x = self.add_feature(trainX) #### write your code below #### return #### write your code above ####。请帮我完成需要填写的代码
时间: 2024-02-10 10:17:17 浏览: 65
vue趋势::rainbow:Vue.js的简洁优雅火花线
好的,根据您提供的代码,以下是需要填写的代码:
```python
# compute gradient of logistic regression
prob = self.sigmoid(x)
grad = np.mean((prob - trainY)[:, None] * x, axis=0)
return grad
```
以上代码会先为输入数据添加全为1的一列,然后计算模型预测的标签概率,最后使用梯度下降的公式计算梯度。其中 `(prob - trainY)[:, None]` 的作用是将一维数组转换为二维数组,方便后续计算。
希望对您有帮助!
阅读全文