informed-rrt*算法原理

时间: 2023-06-06 21:04:52 浏览: 409
Informed-RRT*算法是基于Rapidly-exploring Random Tree (RRT)算法的一种改进方法,它利用启发式信息指导搜索,提高了搜索效率。其基本原理是在节点扩展时,采用启发式距离代替传统的欧氏距离,使得节点从更优的方向扩展。并利用一种距离函数来辨别搜索结果的优劣,以此来指导搜索。
相关问题

C++实现informed-rrt*算法

Informed-RRT* 是一种路径规划算法,它使用了 RRT* 算法和启发式搜索的思想,可以在高维空间中高效地搜索路径。以下是 C 语言实现 Informed-RRT* 算法的步骤: 1. 定义状态空间和搜索空间,以及起点和终点。 ```c typedef struct { double x; // x 坐标 double y; // y 坐标 } Point; typedef struct { Point pos; // 当前状态 double cost; // 状态的代价 } State; typedef struct { State state; int parent; // 父状态的编号 } Node; typedef struct { Point start; // 起点 Point goal; // 终点 double epsilon; // 启发式搜索参数 } Problem; ``` 2. 定义 RRT 树的数据结构,并初始化根节点。 ```c typedef struct { Node* nodes; // 节点数组 int num_nodes; // 节点数量 int max_nodes; // 最大节点数量 } RRT; void init_rrt(RRT* rrt, State start_state) { rrt->nodes = (Node*) malloc(sizeof(Node) * MAX_NODES); rrt->num_nodes = 1; // 初始化根节点 rrt->max_nodes = MAX_NODES; Node root_node; root_node.state = start_state; root_node.parent = -1; rrt->nodes[0] = root_node; } ``` 3. 实现 RRT* 算法的核心函数 `extend_rrt`,用于生成新的节点。 ```c int extend_rrt(RRT* rrt, Problem problem, double max_dist) { // 随机采样一个状态 State rand_state = sample_state(problem); // 在树中寻找最近的节点 int nearest_node_id = find_nearest_node(rrt, rand_state); // 生成新的状态 State new_state = generate_new_state(rrt->nodes[nearest_node_id].state, rand_state, max_dist); // 检查新状态是否合法 if (!is_valid_state(new_state)) { return -1; } // 计算新状态的代价 double new_cost = calculate_cost(rrt, nearest_node_id, new_state); // 在树中寻找最优的父节点 int best_parent_id = find_best_parent(rrt, new_state, new_cost, problem); // 将新状态插入树中 Node new_node; new_node.state = new_state; new_node.parent = best_parent_id; rrt->nodes[rrt->num_nodes++] = new_node; // 检查是否到达终点 if (is_goal(new_state, problem.goal)) { return 1; } return 0; } ``` 4. 实现 Informed-RRT* 的启发式搜索函数 `informed_rrt_star`。 ```c void informed_rrt_star(RRT* rrt, Problem problem) { double max_dist = MAX_DIST; int goal_reached = 0; while (!goal_reached) { // 执行 RRT* 算法生成新的节点 int result = extend_rrt(rrt, problem, max_dist); if (result == 1) { goal_reached = 1; } if (rrt->num_nodes >= rrt->max_nodes) { break; } // 更新启发式搜索参数 epsilon double epsilon = calculate_epsilon(rrt, problem); if (epsilon < problem.epsilon) { max_dist = MAX_DIST; } else { max_dist = epsilon; } } } ``` 5. 在主函数中调用 `informed_rrt_star` 函数,生成路径并输出。 ```c int main() { RRT rrt; Problem problem; // 初始化问题 init_problem(&problem); // 初始化 RRT 树 init_rrt(&rrt, start_state); // 执行 Informed-RRT* 算法 informed_rrt_star(&rrt, problem); // 生成路径 int* path = generate_path(&rrt, problem); // 输出路径 for (int i = 0; i < rrt.num_nodes; i++) { printf("(%lf, %lf)\n", rrt.nodes[path[i]].state.pos.x, rrt.nodes[path[i]].state.pos.y); } return 0; } ``` 以上是 C 语言实现 Informed-RRT* 算法的基本步骤,具体实现可以根据实际情况进行调整和优化。

informed-rrt*算法matlab

### 回答1: informed-rrt*算法是一种用于路径规划的算法,它是基于rrt*算法的改进版。该算法可以在高维空间中快速找到最优路径,并且可以在不同的环境中进行适应性规划。在matlab中,可以使用该算法进行机器人路径规划、自动驾驶等方面的应用。 ### 回答2: informed-rrt*算法是一种针对高维且复杂的运动规划问题的优化算法。相对于传统算法,它采用高效的变相空间搜索方法,通过对问题进行局部优化,实现了较好的运动规划。 根据informed-rrt*算法的特点,可以将其分为两个部分:RRT*树和信息更新。其中,RRT*是一种高效的树搜索算法,可用于解决多种运动规划问题。在informed-rrt*算法中,RRT*树可以帮助找到一个有效的路径。信息更新则是通过收集周围环境的信息,进一步优化路径,提高解决问题的效率和准确性。 在使用informed-rrt*算法时,可以使用MATLAB实现。MATLAB提供了很多工具箱和函数,可以帮助我们快速实现算法。下面介绍在MATLAB中使用informed-rrt*算法实现运动规划的过程: 1. 首先,需要定义问题的状态空间和障碍物空间。这可以通过MATLAB提供的函数来实现。 2. 接着,可以使用MATLAB提供的函数实现RRT*算法来搜索路径。RRT*算法可以生成一组树状结构,用于表示空间内的可行路径。 3. 在RRT*算法生成的树上,在每个节点处计算到目标点的距离,并更新树上所有节点的信息。这可以通过使用MATLAB函数实现。 4. 然后,使用A*算法对更新后的树进行搜索,以找到一条沿树分支路径的最优解。A*算法是一种常用的启发式搜索算法,在搜索问题上取得了很好的效果。 5. 沿着路径生成的轨迹,可以使用MATLAB的控制器进行优化,以实现更加顺畅的路径跟踪。可以使用MATLAB的Simulink进行控制器设计和仿真。 总之,informed-rrt*算法是一种高效的运动规划算法,可以在较短的时间内找到问题的解决方案。使用MATLAB可以方便地实现算法,并为算法提供强大的支持和调试工具。 ### 回答3: Informed-RRT*算法是一种用于路径规划的算法,适用于高维空间和复杂环境。它是Rapidly-Exploring Random Tree (RRT)算法的扩展版本,采用启发式方法增加了搜索效率,在处理非凸障碍和具有用于推测启发信息的传感器时表现良好。 Informed-RRT*算法核心思想是利用启发信息引导搜索,加速路径探索。启发值是指从代价表面的一部分估计出的未获得代价区域的代价。该算法包含两阶段:较低成本路径的构建和高质量路径的优化。 在构建阶段中,算法按照一定规则生成随机树,并尝试连接树的末端节点和目标状态,形成较低代价的树。在优化阶段中,算法使用多路径距离指标优化路径,从而得到高质量的路径。该算法可以通过Matlab实现,并且可以很容易地与外部传感器集成。 在Matlab中实现Informed-RRT*算法需要用到Matlab Robotics System Toolbox。该工具箱提供了用于路径规划的函数和工具,如RRT搜索、A*搜索、Bug算法等。此外,Matlab还提供了用于可视化和仿真的工具,优化了算法的测试和调试。 总之,Informed-RRT*算法是一种高效的路径规划算法,可以将其用于各种应用中,如无人机路径规划、机器人导航等。在Matlab中实现该算法需要掌握Matlab Robotics System Toolbox的使用,以及算法的核心思想和运作方式。

相关推荐

最新推荐

recommend-type

服务器虚拟化部署方案.doc

服务器、电脑、
recommend-type

北京市东城区人民法院服务器项目.doc

服务器、电脑、
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【基础】网络编程入门:使用HTTP协议

![【基础】网络编程入门:使用HTTP协议](https://img-blog.csdnimg.cn/direct/4fbc6b5a6d744a519429654f56ea988e.png) # 1. 网络编程基础** **1.1 网络基础知识** 网络是连接计算机和设备的系统,允许它们交换数据和资源。它由节点(计算机、服务器、路由器等)和连接它们的数据链路组成。网络可以是局域网(LAN)、广域网(WAN)或互联网。 **1.2 TCP/IP协议栈** TCP/IP协议栈是一组通信协议,用于在网络上传输数据。它分为四层: * **链路层:**处理物理连接和数据传输。 * **网络层:
recommend-type

matlab画矢量分布图

在MATLAB中,绘制矢量分布图通常用于可视化二维或三维空间中的向量场,这有助于理解力场、风速、磁场等现象的分布情况。以下是使用MATLAB创建矢量分布图的基本步骤: 1. 准备数据:首先,你需要有一个表示向量场的矩阵,其中每个元素代表一个点的x、y坐标及其对应的矢量分量。 2. 使用`quiver`函数:MATLAB提供了一个内置函数`quiver(x, y, U, V)`,其中`x`和`y`是网格的行和列坐标,`U`和`V`是对应于每个网格点的x和y分量的向量值。 ```matlab [X, Y] = meshgrid(x, y); % 创建网格 quiver(X,