python中a=b.copy()和a=b有什么区别

时间: 2024-01-02 20:04:40 浏览: 38
在 Python 中,`a = b.copy()` 和 `a = b` 是不同的赋值操作。 `a = b.copy()` 是用 `b` 的副本来创建一个新的对象,并将该对象赋值给 `a`。这意味着当修改 `a` 的值时,`b` 不会受到任何影响,因为它们是两个不同的对象。 而 `a = b` 是将 `a` 和 `b` 指向同一个对象。这意味着当修改 `a` 或 `b` 的值时,它们都会发生变化,因为它们指向的是同一个对象。 下面是一个简单的例子来说明这两个操作的区别: ```python # 使用 b.copy() b = [1, 2, 3] a = b.copy() a.append(4) print(a) # [1, 2, 3, 4] print(b) # [1, 2, 3] # 使用 a=b b = [1, 2, 3] a = b a.append(4) print(a) # [1, 2, 3, 4] print(b) # [1, 2, 3, 4] ``` 可以看到,使用 `b.copy()` 创建了一个新的对象 `a`,因此修改 `a` 的值不会影响 `b`。而使用 `a=b`,`a` 和 `b` 指向同一个对象,因此修改 `a` 或 `b` 的值都会影响另一个变量。
相关问题

def QR(A): def householder(a): n = len(a) v = np.zeros(n) v[0] = np.linalg.norm(a) if a[0] < 0: v[0] = -v[0] v = v + a v = v / np.linalg.norm(v) H = np.eye(n) - 2 * np.outer(v, v) return H def qr_factorization(A): m, n = A.shape Q = np.eye(m) R = A.copy() for j in range(min(m, n)): a = R[j:, j] H = np.eye(m) H[j:, j:] = householder(a) Q = Q @ H.T R = H @ R return Q, R Q, R = qr_factorization(A) b = sp.Matrix(sp.symbols('a1:11')) # 求解Ly=b中的y y = sp.zeros(10, 1) # 初始化y y = Q.T@b # 求解Ux=y中的x x = sp.zeros(10, 1) # 初始化x for i in range(9, -1, -1): x[i] = y[i] for j in range(i+1, 10): x[i] -= R[i, j] * x[j] x[i] /= R[i, i] matrice_coeff = sp.Matrix(np.zeros((10, 10))) for i in range(10): for j in range(10): matrice_coeff[i, j] = x[i].coeff(sp.Symbol('a{}'.format(j + 1))) return(matrice_coeff)修改这段函数,让def里面不要再嵌套def

可以将内部的两个函数 `householder` 和 `qr_factorization` 移到外部并改为类的方法,这样就不需要嵌套 `def` 了。以下是修改后的代码: ```python import numpy as np import sympy as sp class QRDecomposition: def __init__(self, A): self.A = A self.m, self.n = A.shape self.Q = np.eye(self.m) self.R = self.A.copy() def householder(self, a): v = np.zeros(self.n) v[0] = np.linalg.norm(a) if a[0] < 0: v[0] = -v[0] v = v + a v = v / np.linalg.norm(v) H = np.eye(self.m) - 2 * np.outer(v, v) return H def qr_factorization(self): for j in range(min(self.m, self.n)): a = self.R[j:, j] H = np.eye(self.m) H[j:, j:] = self.householder(a) self.Q = self.Q @ H.T self.R = H @ self.R def solve(self, b): y = self.Q.T @ b x = np.zeros(self.n) for i in range(self.n - 1, -1, -1): x[i] = y[i] for j in range(i + 1, self.n): x[i] -= self.R[i, j] * x[j] x[i] /= self.R[i, i] return x def get_coefficients(self, b): self.qr_factorization() x = self.solve(b) matrice_coeff = sp.Matrix(np.zeros((self.n, self.n))) for i in range(self.n): for j in range(self.n): matrice_coeff[i, j] = x[i].coeff(sp.Symbol('a{}'.format(j + 1))) return matrice_coeff ``` 这样,我们可以通过创建 `QRDecomposition` 类的实例来调用它的方法。例如,可以按如下方式使用: ```python A = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [2, 3, 4, 5, 6, 7, 8, 9, 10, 1], [3, 4, 5, 6, 7, 8, 9, 10, 1, 2], [4, 5, 6, 7, 8, 9, 10, 1, 2, 3], [5, 6, 7, 8, 9, 10, 1, 2, 3, 4], [6, 7, 8, 9, 10, 1, 2, 3, 4, 5], [7, 8, 9, 10, 1, 2, 3, 4, 5, 6], [8, 9, 10, 1, 2, 3, 4, 5, 6, 7], [9, 10, 1, 2, 3, 4, 5, 6, 7, 8], [10, 1, 2, 3, 4, 5, 6, 7, 8, 9]]) b = sp.Matrix(sp.symbols('a1:11')) qr = QRDecomposition(A) matrice_coeff = qr.get_coefficients(b) print(matrice_coeff) ```

dwxh,dwhh,dwhy = np.zeros_like(wxh), np.zeros_like(Whh),np.zeros_like(Why) dbh, dby = np.zeros_like(bh),np.zeros_like(by) dhnext = np.zeros_like(hs[0]) for t in reversed(range(len(inputs))) : dy = np.copy(ps[t]) for b in range(0,B): dy[targets[t][b],b] -= 1 dwhy += np.dot(dy, hs[t].T) dby += np.expand_dims(np.sum(dy,axis=1),axis=1) dh = np.dot(Why.T, dy)+ dhnext dh = dh * (1-hs[t]*hs[t] ) dbh += np.expand_dims(np.sum(dh,axis=1),axis=1) dWxh += np.dot(dh,xs[t].T) dWhh += np.dot(dh,hs[t - 1].T) dhnext = np.dot(Whh.T,dh) return loss,dWxh,dWhh,dwhy,dbh,dby, hs[len(inputs) - 1] 给这段代码加上注释

```python # 初始化各个参数的梯度为0 dwxh, dwhh, dwhy = np.zeros_like(wxh), np.zeros_like(Whh), np.zeros_like(Why) dbh, dby = np.zeros_like(bh), np.zeros_like(by) dhnext = np.zeros_like(hs[0]) # 反向传播过程 for t in reversed(range(len(inputs))): # 计算当前时刻的输出值 dy = np.copy(ps[t]) for b in range(0,B): dy[targets[t][b], b] -= 1 # 计算各个参数的梯度 dwhy += np.dot(dy, hs[t].T) dby += np.expand_dims(np.sum(dy, axis=1), axis=1) dh = np.dot(Why.T, dy) + dhnext dh = dh * (1 - hs[t] * hs[t]) dbh += np.expand_dims(np.sum(dh, axis=1), axis=1) dWxh += np.dot(dh, xs[t].T) dWhh += np.dot(dh, hs[t - 1].T) dhnext = np.dot(Whh.T, dh) # 返回损失函数值以及各个参数的梯度和最后一个时刻的隐藏状态 return loss, dwxh, dwhh, dwhy, dbh, dby, hs[len(inputs) - 1] ```

相关推荐

解释一段python代码 class KalmanFilter(object): def init(self, dim_x, dim_z, dim_u=0): if dim_x < 1: raise ValueError('dim_x must be 1 or greater') if dim_z < 1: raise ValueError('dim_z must be 1 or greater') if dim_u < 0: raise ValueError('dim_u must be 0 or greater') self.dim_x = dim_x self.dim_z = dim_z self.dim_u = dim_u self.x = zeros((dim_x, 1)) # state self.P = eye(dim_x) # uncertainty covariance self.Q = eye(dim_x) # process uncertainty self.B = None # control transition matrix self.F = eye(dim_x) # state transition matrix self.H = zeros((dim_z, dim_x)) # Measurement function self.R = eye(dim_z) # state uncertainty self._alpha_sq = 1. # fading memory control self.M = np.zeros((dim_z, dim_z)) # process-measurement cross correlation self.z = np.array([[None]*self.dim_z]).T # gain and residual are computed during the innovation step. We # save them so that in case you want to inspect them for various # purposes self.K = np.zeros((dim_x, dim_z)) # kalman gain self.y = zeros((dim_z, 1)) self.S = np.zeros((dim_z, dim_z)) # system uncertainty self.SI = np.zeros((dim_z, dim_z)) # inverse system uncertainty # identity matrix. Do not alter this. self._I = np.eye(dim_x) # these will always be a copy of x,P after predict() is called self.x_prior = self.x.copy() self.P_prior = self.P.copy() # these will always be a copy of x,P after update() is called self.x_post = self.x.copy() self.P_post = self.P.copy() # Only computed only if requested via property self._log_likelihood = log(sys.float_info.min) self._likelihood = sys.float_info.min self._mahalanobis = None self.inv = np.linalg.inv

class SelfAttention(nn.Module): def __init__(self, in_channels, reduction=4): super(SelfAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x) def get_model(input_channels=6, use_xyz=True): return Pointnet2MSG(input_channels=input_channels, use_xyz=use_xyz) class Pointnet2MSG(nn.Module): def __init__(self, input_channels=6, use_xyz=True): super().__init__() self.SA_modules = nn.ModuleList() channel_in = input_channels skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.len()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.len()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] mlps.append(channel_out) self.SA_modules.append( nn.Sequential( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ), SelfAttention(channel_out) ) ) skip_channel_list.append(channel_out) channel_in = channel_out self.FP_modules = nn.ModuleList() for k in range(cfg.RPN.FP_MLPS.len()): pre_channel = cfg.RPN.FP_MLPS[k + 1][-1] if k + 1 < len(cfg.RPN.FP_MLPS) else channel_out self.FP_modules.append( PointnetFPModule( mlp=[pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k] ) ) def _break_up_pc(self, pc): xyz = pc[..., 0:3].contiguous() features = ( pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None ) return xyz, features def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0]在forward函数中,如果我要使用channel_out变量传入SA_modules中,我该如何在forward函数中计算并得到它,再传入SA_modules中,你可以给我详细的代码吗?

最新推荐

recommend-type

童程童美2020Python笔试题A卷.doc

4. join() 和 split() 函数:Python 的 `join` 函数可以将多个字符串连接成一个字符串,例如 `",".join(["a", "b", "c"])` 将返回 `"a,b,c"`。Python 的 `split` 函数可以将一个字符串分割成多个子串,例如 `"a,b,c...
recommend-type

Python-copy()与deepcopy()区别详解

`copy()`和`deepcopy()`是Python标准库`copy`模块中提供的两个函数,它们用于创建对象的副本。本文将深入探讨这两种复制方法的区别及其背后的工作原理。 首先,让我们明确`copy()`和`deepcopy()`的基本概念: 1. *...
recommend-type

JAVA图书馆书库管理系统设计(论文+源代码).zip

JAVA图书馆书库管理系统设计(论文+源代码)
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。