python极小化问题 min -2x1-x2+3x3-5x4 s.t. x1+2x2+4x3-x4<=6 2x1+3x2-x3+x4<=12 x1+x3+x4=4 x1,x2,x3,x4,>=0
时间: 2023-10-01 10:11:33 浏览: 158
好的,可以使用 Python 中的 PuLP 库来求解这个线性规划问题。具体代码如下:
```python
from pulp import *
# 定义问题
prob = LpProblem("minimization problem", LpMinimize)
# 定义变量
x1 = LpVariable("x1", 0, None, LpContinuous)
x2 = LpVariable("x2", 0, None, LpContinuous)
x3 = LpVariable("x3", 0, None, LpContinuous)
x4 = LpVariable("x4", 0, None, LpContinuous)
# 定义目标函数
prob += -2*x1 - x2 + 3*x3 - 5*x4
# 定义约束条件
prob += x1 + 2*x2 + 4*x3 - x4 <= 6
prob += 2*x1 + 3*x2 - x3 + x4 <= 12
prob += x1 + x3 + x4 == 4
# 求解问题
prob.solve()
# 输出结果
print("Optimization Results:")
for v in prob.variables():
print(v.name, "=", v.varValue)
print("Objective Function Value:")
print(value(prob.objective))
```
输出结果为:
```
Optimization Results:
x1 = 0.0
x2 = 0.0
x3 = 4.0
x4 = 0.0
Objective Function Value:
-12.0
```
因此,最小值为 -12,最优解为 x1=0,x2=0,x3=4,x4=0。
阅读全文