def select_action(self, state): if state[-1] >= 140: return 1 if random.random() < self.epsilon: return random.randrange(self.output_dim) else: robot_angle = state[2] dust_angle = state[5] angle_dis = robot_angle - dust_angle if angle_dis < 0: return 0 elif angle_dis > 0: return 2 else: return 1

时间: 2024-02-10 08:23:54 浏览: 21
你的第一个问题是关于一个选择动作的函数。这个函数根据输入的状态选择一个动作返回。 首先,函数检查状态的最后一个元素是否大于等于140。如果是,函数返回1。接下来,函数通过随机数与epsilon值进行比较,如果小于epsilon,函数将随机选择一个动作返回。否则,函数计算机器人角度和灰尘角度之间的差值,并根据差值的结果返回相应的动作。如果差值小于0,函数返回0;如果差值大于0,函数返回2;如果差值等于0,函数返回1。
相关问题

多智能体编队actor-critic pytorch代码

以下是一个简单的多智能体编队actor-critic PyTorch代码示例: ```python import torch import torch.nn as nn import torch.optim as optim import numpy as np # 定义Actor神经网络 class Actor(nn.Module): def __init__(self, state_size, action_size): super(Actor, self).__init__() self.fc1 = nn.Linear(state_size, 128) self.fc2 = nn.Linear(128, 64) self.fc3 = nn.Linear(64, action_size) self.relu = nn.ReLU() self.softmax = nn.Softmax(dim=-1) def forward(self, state): x = self.relu(self.fc1(state)) x = self.relu(self.fc2(x)) x = self.softmax(self.fc3(x)) return x # 定义Critic神经网络 class Critic(nn.Module): def __init__(self, state_size): super(Critic, self).__init__() self.fc1 = nn.Linear(state_size, 128) self.fc2 = nn.Linear(128, 64) self.fc3 = nn.Linear(64, 1) self.relu = nn.ReLU() def forward(self, state): x = self.relu(self.fc1(state)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x # 定义Actor-Critic算法 class ActorCritic: def __init__(self, state_size, action_size, lr_actor=1e-4, lr_critic=1e-3, gamma=0.99): self.actor = Actor(state_size, action_size) self.critic = Critic(state_size) self.optimizer_actor = optim.Adam(self.actor.parameters(), lr=lr_actor) self.optimizer_critic = optim.Adam(self.critic.parameters(), lr=lr_critic) self.gamma = gamma def select_action(self, state): state = torch.FloatTensor(state) action_probs = self.actor.forward(state) action = torch.multinomial(action_probs, 1) return action.item() def update(self, rewards, states, next_states, actions, done): # 计算critic的loss rewards = torch.FloatTensor(rewards) states = torch.FloatTensor(states) next_states = torch.FloatTensor(next_states) actions = torch.LongTensor(actions) td_target = rewards + (1 - done) * self.gamma * self.critic(next_states).squeeze() td_error = td_target - self.critic(states).squeeze() critic_loss = td_error.pow(2).mean() # 更新critic网络 self.optimizer_critic.zero_grad() critic_loss.backward() self.optimizer_critic.step() # 计算actor的loss action_probs = self.actor(states) log_probs = torch.log(torch.gather(action_probs, 1, actions.view(-1, 1))) actor_loss = -(log_probs * td_error.detach()).mean() # 更新actor网络 self.optimizer_actor.zero_grad() actor_loss.backward() self.optimizer_actor.step() # 定义环境 class Environment: def __init__(self, num_agents, state_size, action_size): self.num_agents = num_agents self.state_size = state_size self.action_size = action_size def reset(self): self.states = np.zeros((self.num_agents, self.state_size)) self.rewards = np.zeros(self.num_agents) self.done = np.zeros(self.num_agents, dtype=bool) self.total_reward = np.zeros(self.num_agents) return self.states def step(self, actions): for i in range(self.num_agents): if not self.done[i]: self.states[i] += np.random.rand(self.state_size) # 模拟环境 self.rewards[i] = np.random.rand() # 模拟奖励 self.total_reward[i] += self.rewards[i] if np.random.rand() < 0.1: # 模拟终止 self.done[i] = True next_states = self.states return next_states, self.rewards, self.done # 训练 env = Environment(num_agents=2, state_size=4, action_size=2) ac = ActorCritic(state_size=4, action_size=2) num_episodes = 1000 for i in range(num_episodes): states = env.reset() done = False while not done.all(): actions = [ac.select_action(state) for state in states] next_states, rewards, done = env.step(actions) ac.update(rewards, states, next_states, actions, done) states = next_states print("Episode {}, Total reward: {}".format(i, env.total_reward)) ``` 请注意,此代码示例仅用于说明多智能体编队actor-critic算法的实现方式,并不是一个完整、可用的算法。实际应用中,需要根据具体问题进行修改和优化。

给出基于pytorch强化学习SAC算法对Swimmer-v3训练输出的policy.pth、actor.pth和critic.pth模型的代码,写出如何转化成tensorflow lite,并部署到esp32中

这是一个比较复杂的问题,需要分为几个步骤来完成。 首先,我们需要使用PyTorch实现SAC算法来训练Swimmer-v3环境。这个过程可以参考OpenAI Gym官方文档,具体实现代码如下: ```python import torch import torch.nn as nn import torch.optim as optim import gym import numpy as np import random # 定义策略网络 class Policy(nn.Module): def __init__(self, state_dim, action_dim, hidden_dim=256): super(Policy, self).__init__() self.fc1 = nn.Linear(state_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, action_dim) def forward(self, state): x = torch.relu(self.fc1(state)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x # 定义Q网络 class QNet(nn.Module): def __init__(self, state_dim, action_dim, hidden_dim=256): super(QNet, self).__init__() self.fc1 = nn.Linear(state_dim+action_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, 1) def forward(self, state, action): x = torch.cat([state, action], dim=1) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x # 定义重要性采样函数 def logprob(mu, log_std, action): var = torch.exp(2*log_std) logp = -0.5 * torch.sum(torch.pow(action-mu, 2)/var + 2*log_std + np.log(2*np.pi), dim=1) return logp # 定义SAC算法 class SAC: def __init__(self, env, state_dim, action_dim, hidden_dim=256, lr=0.001, gamma=0.99, tau=0.01, alpha=0.2, buffer_size=1000000, batch_size=256, target_entropy=None): self.env = env self.state_dim = state_dim self.action_dim = action_dim self.hidden_dim = hidden_dim self.lr = lr self.gamma = gamma self.tau = tau self.alpha = alpha self.buffer_size = buffer_size self.batch_size = batch_size self.target_entropy = -action_dim if target_entropy is None else target_entropy self.policy = Policy(state_dim, action_dim, hidden_dim).to(device) self.policy_optimizer = optim.Adam(self.policy.parameters(), lr=lr) self.q1 = QNet(state_dim, action_dim, hidden_dim).to(device) self.q2 = QNet(state_dim, action_dim, hidden_dim).to(device) self.q1_optimizer = optim.Adam(self.q1.parameters(), lr=lr) self.q2_optimizer = optim.Adam(self.q2.parameters(), lr=lr) self.value = QNet(state_dim, action_dim, hidden_dim).to(device) self.value_optimizer = optim.Adam(self.value.parameters(), lr=lr) self.memory = [] self.steps = 0 self.episodes = 0 def select_action(self, state, test=False): state = torch.FloatTensor(state).to(device) with torch.no_grad(): mu = self.policy(state) log_std = torch.zeros_like(mu) action = mu + torch.exp(log_std) * torch.randn_like(mu) action = action.cpu().numpy() return action if test else np.clip(action, self.env.action_space.low, self.env.action_space.high) def update(self): if len(self.memory) < self.batch_size: return state, action, reward, next_state, done = self.sample() state = torch.FloatTensor(state).to(device) action = torch.FloatTensor(action).to(device) reward = torch.FloatTensor(reward).unsqueeze(-1).to(device) next_state = torch.FloatTensor(next_state).to(device) done = torch.FloatTensor(done).unsqueeze(-1).to(device) with torch.no_grad(): next_action, next_log_prob = self.policy.sample(next_state) next_q1 = self.q1(next_state, next_action) next_q2 = self.q2(next_state, next_action) next_q = torch.min(next_q1, next_q2) - self.alpha * next_log_prob target_q = reward + (1-done) * self.gamma * next_q q1 = self.q1(state, action) q2 = self.q2(state, action) value = self.value(state) q1_loss = nn.MSELoss()(q1, target_q.detach()) q2_loss = nn.MSELoss()(q2, target_q.detach()) value_loss = nn.MSELoss()(value, torch.min(q1, q2).detach()) self.q1_optimizer.zero_grad() q1_loss.backward() self.q1_optimizer.step() self.q2_optimizer.zero_grad() q2_loss.backward() self.q2_optimizer.step() self.value_optimizer.zero_grad() value_loss.backward() self.value_optimizer.step() with torch.no_grad(): new_action, new_log_prob = self.policy.sample(state) q1_new = self.q1(state, new_action) q2_new = self.q2(state, new_action) q_new = torch.min(q1_new, q2_new) - self.alpha * new_log_prob policy_loss = (self.alpha * new_log_prob - q_new).mean() self.policy_optimizer.zero_grad() policy_loss.backward() self.policy_optimizer.step() self.alpha = max(0.01, self.alpha - 1e-4) for target_param, param in zip(self.value.parameters(), self.q1.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) for target_param, param in zip(self.value.parameters(), self.q2.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) self.steps += self.batch_size if done.any(): self.episodes += done.sum().item() def sample(self): indices = np.random.randint(0, len(self.memory), size=self.batch_size) state, action, reward, next_state, done = zip(*[self.memory[idx] for idx in indices]) return state, action, reward, next_state, done def run(self, episodes=1000, render=False): for episode in range(episodes): state = self.env.reset() episode_reward = 0 done = False while not done: if render: self.env.render() action = self.select_action(state) next_state, reward, done, _ = self.env.step(action) self.memory.append((state, action, reward, next_state, done)) self.update() state = next_state episode_reward += reward print(f"Episode {episode}, Reward {episode_reward}") self.save_model() def save_model(self, path="./"): torch.save(self.policy.state_dict(), path + "policy.pth") torch.save(self.q1.state_dict(), path + "q1.pth") torch.save(self.q2.state_dict(), path + "q2.pth") def load_model(self, path="./"): self.policy.load_state_dict(torch.load(path + "policy.pth")) self.q1.load_state_dict(torch.load(path + "q1.pth")) self.q2.load_state_dict(torch.load(path + "q2.pth")) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") env = gym.make("Swimmer-v3") sac = SAC(env, env.observation_space.shape[0], env.action_space.shape[0]) sac.run() ``` 接下来,我们需要将训练好的模型导出为TensorFlow Lite模型。为此,我们需要使用ONNX将PyTorch模型转换为ONNX格式,然后使用TensorFlow Lite Converter将ONNX模型转换为TensorFlow Lite模型。具体实现代码如下: ```python import onnx from onnx_tf.backend import prepare import tensorflow as tf from tensorflow import lite # 将PyTorch模型转换为ONNX格式 model = SAC(env, env.observation_space.shape[0], env.action_space.shape[0]) model.load_model() dummy_input = torch.randn(1, env.observation_space.shape[0]) torch.onnx.export(model.policy, dummy_input, "policy.onnx", export_params=True) # 将ONNX模型转换为TensorFlow Lite模型 onnx_model = onnx.load("policy.onnx") tf_model = prepare(onnx_model) tflite_model = lite.TFLiteConverter.from_session(tf_model.session).convert() # 保存TensorFlow Lite模型 with open("policy.tflite", "wb") as f: f.write(tflite_model) ``` 最后,我们需要将TensorFlow Lite模型部署到ESP32中。首先,需要安装ESP-IDF开发环境。然后,我们可以使用ESP32的TensorFlow Lite for Microcontrollers库来加载和运行模型。具体实现代码如下: ```c #include "tensorflow/lite/micro/micro_interpreter.h" #include "tensorflow/lite/micro/kernels/all_ops_resolver.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/version.h" // 定义模型文件名 #define MODEL_FILENAME "/path/to/policy.tflite" // 定义输入输出张量的数量和形状 #define INPUT_TENSOR_NUM 1 #define INPUT_TENSOR_HEIGHT 1 #define INPUT_TENSOR_WIDTH 8 #define OUTPUT_TENSOR_NUM 1 #define OUTPUT_TENSOR_HEIGHT 1 #define OUTPUT_TENSOR_WIDTH 2 int main() { // 加载模型 const tflite::Model* model = tflite::GetModel(MODEL_FILENAME); if (model == nullptr) { return -1; } // 创建解释器和张量分配器 static tflite::MicroInterpreter interpreter(model, tflite::AllOpsResolver(), nullptr, nullptr); interpreter.AllocateTensors(); // 获取输入输出张量 TfLiteTensor* input = interpreter.input(0); input->dims->data[0] = INPUT_TENSOR_HEIGHT; input->dims->data[1] = INPUT_TENSOR_WIDTH; input->type = kTfLiteFloat32; TfLiteTensor* output = interpreter.output(0); output->dims->data[0] = OUTPUT_TENSOR_HEIGHT; output->dims->data[1] = OUTPUT_TENSOR_WIDTH; output->type = kTfLiteFloat32; // 运行模型 float input_data[INPUT_TENSOR_HEIGHT][INPUT_TENSOR_WIDTH] = {0.0}; float output_data[OUTPUT_TENSOR_HEIGHT][OUTPUT_TENSOR_WIDTH] = {0.0}; input->data.f = reinterpret_cast<float*>(input_data); output->data.f = reinterpret_cast<float*>(output_data); interpreter.Invoke(); // 打印输出结果 printf("Output: %f %f\n", output_data[0][0], output_data[0][1]); return 0; } ``` 需要注意的是,ESP32的TensorFlow Lite for Microcontrollers库只支持一小部分的TensorFlow Lite操作,因此在将模型转换为TensorFlow Lite格式时需要使用支持的操作。如果模型中包含不支持的操作,可以尝试使用TensorFlow Lite for Microcontrollers的自定义操作接口来实现。

相关推荐

最新推荐

recommend-type

grpcio-1.63.0-cp38-cp38-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。