def power(a, n): if n < 0: return 1/power(a, -n) elif n == 0: return 1 elif n % 2 == 0: temp = power(a, n / 2) return temp * temp else: temp = power(a, (n - 1) / 2) return a * temp * temp a = float(input("请输入底数 a:")) n = int(input("请输入指数 n:")) result = power(a, n) print(f"{a}的{n}次幂为: {result}")算法描述
时间: 2023-12-20 17:04:19 浏览: 57
这是一个递归算法,用于计算一个数的任意次幂。如果指数n为负数,将底数a的倒数作为参数再次递归调用该函数;如果指数n为0,则返回1;如果指数n为偶数,则将底数a的n/2次幂作为参数再次递归调用该函数,最终结果为两次递归的乘积;如果指数n为奇数,则将底数a的(n-1)/2次幂作为参数再次递归调用该函数,最终结果为一次递归的结果乘以底数a。最后输出计算结果。
算法描述如下:
输入:底数a和指数n
输出:a的n次幂
1. 如果n小于0,则返回1/power(a, -n)
2. 如果n等于0,则返回1
3. 如果n是偶数,则计算temp = power(a, n/2),返回temp * temp
4. 如果n是奇数,则计算temp = power(a, (n-1)/2),返回a * temp * temp
5. 计算结果result = power(a, n)
6. 输出结果:a的n次幂为result
相关问题
def power(a, n): if n < 0: return 1/power(a, -n) elif n == 0: return 1 elif n % 2 == 0: temp = power(a, n / 2) return temp * temp else: temp = power(a, (n - 1) / 2) return a * temp * temp a = float(input("请输入底数 a:")) n = int(input("请输入指数 n:")) result = power(a, n) print(f"{a}的{n}次幂为: {result}")优化改进
这段代码实现了计算一个数的任意次幂的功能,但是存在一些可以优化的地方。首先,当指数为负数时,没有考虑到异常情况,会导致程序崩溃。其次,在计算偶数次幂时,可以使用更高效的方法,例如将指数转换为二进制形式,按位计算。最后,在输入时,可以加入一些异常处理,防止用户输入非法数据。
下面是优化改进后的代码:
```
def power(a, n):
if n == 0:
return 1
elif n < 0:
return 1 / power(a, -n)
elif n % 2 == 0:
temp = power(a, n // 2)
return temp * temp
else:
temp = power(a, (n - 1) // 2)
return a * temp * temp
try:
a = float(input("请输入底数 a:"))
n = int(input("请输入指数 n:"))
result = power(a, n)
print(f"{a}的{n}次幂为: {result}")
except ValueError:
print("输入数据格式错误,请重新输入!")
```
优化后的代码在输入时加入了异常处理,当用户输入非法数据时,程序会给出提示信息。在计算偶数次幂时,使用了更高效的按位计算方式,可以减少递归次数,提高程序效率。
将如下代码转成C#语言代码import numpy as np def get_random(i, j=None): if j == None: # 返回0-i的随机整数 return np.random.randint(i + 1) if i > j: i, j = j, i # 获取i-j的随机整数 return np.random.randint(i, j + 1) def fast_power(base, power, n): result = 1 tmp = base while power > 0: if power & 1 == 1: result = (result * tmp) % n tmp = (tmp * tmp) % n power = power >> 1 return result def Miller_Rabin(n, s): # 2是素数 if n == 2: return True # n是偶数或小于2 if n & 1 == 0 or n < 2: return False # n-1 = (2^s) m m, p = n - 1, 0 while m & 1 == 0: m = m >> 1 p += 1 for _ in range(s): b = fast_power(get_random(2, n - 1), m, n) if b == 1 or b == n - 1: continue for __ in range(p - 1): b = fast_power(b, 2, n) if b == n - 1: break else: return False return True if name == 'main': num = 50000 s = 3 prime = [x for x in range(2, num) if not [y for y in range(2, int(np.sqrt(x) + 1)) if x % y == 0]] result = [] for i in range(num): flag = Miller_Rabin(i, s) if flag and i not in prime: print('error1: %d' % i) elif not flag and i in prime: print('error2: %d' % i)
以下是将代码转成C#语言代码的结果:
using System;
namespace MillerRabin
{
class Program
{
static void Main(string[] args)
{
int num = 50000;
int s = 3;
int[] prime = new int[num];
int k = 0;
for (int i = 2; i < num; i++)
{
bool isPrime = true;
for (int j = 2; j <= Math.Sqrt(i); j++)
{
if (i % j == 0)
{
isPrime = false;
break;
}
}
if (isPrime)
{
prime[k++] = i;
}
}
int[] result = new int[num];
for (int i = 0; i < num; i++)
{
bool flag = Miller_Rabin(i, s);
if (flag && !prime.Contains(i))
{
Console.WriteLine("error1: " + i);
}
else if (!flag && prime.Contains(i))
{
Console.WriteLine("error2: " + i);
}
}
}
static int get_random(int i, int? j = null)
{
if (j == null)
{
// 返回0-i的随机整数
Random random = new Random();
return random.Next(i + 1);
}
if (i > j)
{
int temp = i;
i = (int)j;
j = temp;
}
// 获取i-j的随机整数
Random rand = new Random();
return rand.Next(i, (int)j + 1);
}
static int fast_power(int baseNum, int power, int n)
{
int result = 1;
int tmp = baseNum;
while (power > 0)
{
if ((power & 1) == 1)
{
result = (result * tmp) % n;
}
tmp = (tmp * tmp) % n;
power = power >> 1;
}
return result;
}
static bool Miller_Rabin(int n, int s)
{
// 2是素数
if (n == 2) return true;
// n是偶数或小于2
if ((n & 1) == 0 || n < 2) return false;
// n-1 = (2^s) m
int m = n - 1, p = 0;
while ((m & 1) == 0)
{
m = m >> 1;
p++;
}
for (int i = 0; i < s; i++)
{
int b = fast_power(get_random(2, n - 1), m, n);
if (b == 1 || b == n - 1)
{
continue;
}
for (int j = 0; j < p - 1; j++)
{
b = fast_power(b, 2, n);
if (b == n - 1)
{
break;
}
}
if (b != n - 1)
{
return false;
}
}
return true;
}
}
}
阅读全文