用分支限界法解决装载问题

时间: 2024-01-05 07:03:25 浏览: 105
分支限界法是一种常用的优化算法,它可以用来在有限空间中找到最优解。在装载问题中,分支限界法可以被用来寻找一些最优的方案,以最小化货物的运输量或以最少数量的车辆运输货物。 具体实现时,我们可以将所有可能的状态(即装载方案)存储在一个搜索树中。然后,我们遍历该搜索树,对于每个搜索节点,我们生成其所有可能的后续状态(即分支),并计算它们优先级(即限界值)。我们优先处理优先级最高的状态(即当前最有希望找到最优解的状态),并将其加入到搜索树中。然后,我们不断重复这个过程,直到找到最优解或搜索树中没有更多的可行方案为止。 在装载问题中,我们可以将搜索状态定义为表示每个货物的装载状态,搜索树的每个节点即表示不同的装载方案。我们可以使用贪心算法来计算每个节点的优先级,例如,我们可以计算运输车辆的使用量或运输的货物总量。
相关问题

用C++和分支限界法解决装载问题

好的,我理解你的问题是如何用C和分支限界法解决装载问题。装载问题是一种NP难问题,可以通过分支限界法求解。具体方法包括:将物品按照单位重量价值降序排序,将每一个可行节点扩展为两个子节点,一个为物品放入背包,一个为不放入背包。在扩展过程中需要对价值下界进行计算并排序,取下界最高的节点作为扩展节点。通过不断地扩展节点,直到找到最优解或者无可行解为止。在代码实现方面可以使用C语言编写,通过结构体等数据结构来表示节点、物品等信息。

分支限界法 java_算法——分支限界法(装载问题)

好的,我可以为你介绍一下分支限界法和装载问题的相关内容。 分支限界法是一种求解最优化问题的算法,通过不断扩展解空间,逐步缩小搜索范围,最终找到最优解。它的核心思想是将问题划分成许多子问题,并采用优先队列(或优先级队列)来维护待扩展的子问题集合,每次取出优先级最高的子问题进行扩展,直到找到最优解或者队列为空。 而装载问题是一种典型的分支限界法应用场景,它的主要思想是在给定的一些物品中选出尽可能多的物品放入容量为C的背包中,使得背包中物品的总重量不超过C,并且背包中物品的总价值最大。这个问题可以通过分支限界法来求解。 下面是一个简单的 Java 代码实现,用于解决装载问题: ```java import java.util.*; public class BranchAndBound { public static void main(String[] args) { int[] w = {5, 10, 20, 30}; // 物品的重量 int[] v = {50, 60, 140, 120}; // 物品的价值 int C = 50; // 背包的容量 int n = w.length; // 物品的数量 int[] x = new int[n]; // 记录每个物品是否被选中 PriorityQueue<Node> queue = new PriorityQueue<>(); queue.offer(new Node(-1, 0, 0)); // 将根节点加入队列中 while (!queue.isEmpty()) { Node node = queue.poll(); // 取出优先级最高的子问题 if (node.level == n - 1) { // 如果是叶子节点,更新最优解 for (int i = 0; i < n; i++) { x[i] = node.x[i]; } } else { int level = node.level + 1; int weight = node.weight; int value = node.value; if (weight + w[level] <= C) { // 左子节点表示选中当前物品 int[] left = Arrays.copyOf(node.x, n); left[level] = 1; queue.offer(new Node(level, weight + w[level], value + v[level], left)); } // 右子节点表示不选当前物品 queue.offer(new Node(level, weight, value, node.x)); } } int max = 0; for (int i = 0; i < n; i++) { if (x[i] == 1) { System.out.println("第" + (i + 1) + "个物品被选中"); max += v[i]; } } System.out.println("最大价值为:" + max); } // 子问题节点 static class Node implements Comparable<Node> { int level; // 当前节点所在的层级 int weight; // 当前节点的背包重量 int value; // 当前节点的背包价值 int[] x; // 记录每个物品是否被选中 public Node(int level, int weight, int value) { this.level = level; this.weight = weight; this.value = value; this.x = new int[0]; } public Node(int level, int weight, int value, int[] x) { this.level = level; this.weight = weight; this.value = value; this.x = x; } @Override public int compareTo(Node o) { return o.value - this.value; // 根据价值进行优先级比较 } } } ``` 希望这个简单的例子能帮助你更好地理解分支限界法和装载问题。如果你还有其他问题或者疑惑,欢迎随时向我提出。
阅读全文

相关推荐

cpp
#include #include #include #include using namespace std; ifstream infile; ofstream outfile; class Node { friend int func(int*, int, int, int*); public: int ID; double weight;//物品的重量 }; bool comp1(Node a, Node b) //定义比较规则 { return a.weight > b.weight; } class Load; class bbnode; class Current { friend Load; friend struct Comp2; private: int upweight;//重量上界 int weight;//结点相应的重量 int level;//活结点在子集树中所处的层次 bbnode* ptr;//指向活结点在子集树中相应结点的指针 }; struct Comp2 { bool operator () (Current *x, Current *y) { return x->upweightupweight; } }; class Load { friend int func(int*, int, int, int*); public: int Max0(); private: priority_queue<Current*, vector, Comp2>H;//利用优先队列(最大堆)储存 int limit(int i); void AddLiveNode(int up, int cw, bool ch, int level); bbnode *P;//指向扩展结点的指针 int c;//背包的容量 int n;//物品的数目 int *w;//重量数组 int cw;//当前装载量 int *bestx;//最优解方案数组 }; class bbnode { friend Load; friend int func( int*, int, int, int*); bbnode* parent; bool lchild; }; //结点中有双亲指针以及左儿子标志 int Load::limit(int i) //计算结点所相应重量的上界 { int left,a; left= c - cw;//剩余容量 a = cw; //b是重量上界,初始值为已经得到的重量 while (i <= n && w[i] parent = P; b->lchild = ch; Current* N = new Current; N->upweight = up; N->weight = cw; N->level = level; N->ptr = b; H.push(N); } int Load::Max0() { int i = 1; P = 0; cw = 0; int bestw = 0; int up = limit(1); while (i != n + 1) { int wt = cw + w[i]; //检查当前扩展结点的左儿子结点 if (wt bestw) bestw =wt; AddLiveNode(up,wt, true, i + 1); } up = limit(i + 1); //检查当前扩展结点的右儿子结点 if (up >= bestw)//如果右儿子可行 { AddLiveNode(up,cw, false, i + 1); } Current* N = H.top(); //取队头元素 H.pop(); P = N->ptr; cw = N->weight; up = N->upweight; i = N->level; } bestx = new int[n + 1]; for (int j = n; j > 0; --j) { bestx[j] = P->lchild; P = P->parent; } return cw; } int func(int *w, int c, int n, int *bestx) //调用Max0函数对子集树的优先队列式进行分支限界搜索 { int W = 0; //初始化装载的总质量为0 Node* Q = new Node[n]; for (int i = 0; i < n; ++i) { Q[i].ID = i + 1; Q[i].weight = w[i+1]; W += w[i+1]; } if (W <= c)//如果足够装,全部装入 return W; sort(Q, Q + n, comp1); //首先,将各物品按照重量从大到小进行排序; Load K; K.w = new int[n + 1]; for (int j = 0; j < n; j++) K.w[j + 1] = w[Q[j].ID]; K.cw = 0; K.c = c; K.n = n; int bestp = K.Max0(); for (int k = 0; k < n; k++) { bestx[Q[k].ID] = K.bestx[k + 1]; } delete []Q; delete []K.w; delete []K.bestx; return bestp; } int main() { int*w,*Final; int c,n,i,best; infile.open("input.txt",ios::in); if(!infile) { cerr<<"open error"<>c; infile>>n; w=new int[n+1]; for(i=1;i>w[i]; infile.close(); Final = new int[n+1]; best = func( w, c, n, Final); outfile.open("output.txt",ios::out); if(!outfile) { cerr<<"open error"<<endl; exit(1); } outfile << best << endl; for (int i = 1; i <= n; ++i) { outfile<<Final[i]<<" "; } outfile.close(); return 0; }

最新推荐

recommend-type

装载问题-分支限界算法-java实现

分支限界算法是解决装载问题的一种常用方法,该算法通过递归地搜索可能的解决方案,并使用剪枝函数来减少搜索空间。该算法可以分为两个阶段:第一阶段是生成可能的解决方案,第二阶段是对这些解决方案进行评价并选择...
recommend-type

装载问题(分支限界法)报告.doc

在这个实验报告中,我们关注的是如何利用分支限界法来解决装载问题,特别是在两艘不同载重量的轮船上的应用。 1. 问题描述: 问题的核心是确定是否存在一种方法,能够将n个具有不同重量的集装箱合理地装载到载重量...
recommend-type

第6章 分支限界法(MIT课件)

分支限界法可以用来解决这个问题,通过设置一个边界函数,每次扩展节点时检查到达新顶点的路径长度是否有可能优于已知的最短路径,若不能则剪枝,否则继续扩展。 6.4 0-1 背包问题 0-1 背包问题是一个经典的组合...
recommend-type

友价免签约支付接口插件最新版

友价免签约支付接口插件最新版
recommend-type

基于java的微信小程序跳蚤市场设计与实现答辩PPT.pptx

基于java的微信小程序跳蚤市场设计与实现答辩PPT.pptx
recommend-type

探索AVL树算法:以Faculdade Senac Porto Alegre实践为例

资源摘要信息:"ALG3-TrabalhoArvore:研究 Faculdade Senac Porto Alegre 的算法 3" 在计算机科学中,树形数据结构是经常被使用的一种复杂结构,其中AVL树是一种特殊的自平衡二叉搜索树,它是由苏联数学家和工程师Georgy Adelson-Velsky和Evgenii Landis于1962年首次提出。AVL树的名称就是以这两位科学家的姓氏首字母命名的。这种树结构在插入和删除操作时会维持其平衡,以确保树的高度最小化,从而在最坏的情况下保持对数的时间复杂度进行查找、插入和删除操作。 AVL树的特点: - AVL树是一棵二叉搜索树(BST)。 - 在AVL树中,任何节点的两个子树的高度差不能超过1,这被称为平衡因子(Balance Factor)。 - 平衡因子可以是-1、0或1,分别对应于左子树比右子树高、两者相等或右子树比左子树高。 - 如果任何节点的平衡因子不是-1、0或1,那么该树通过旋转操作进行调整以恢复平衡。 在实现AVL树时,开发者通常需要执行以下操作: - 插入节点:在树中添加一个新节点。 - 删除节点:从树中移除一个节点。 - 旋转操作:用于在插入或删除节点后调整树的平衡,包括单旋转(左旋和右旋)和双旋转(左右旋和右左旋)。 - 查找操作:在树中查找一个节点。 对于算法和数据结构的研究,理解AVL树是基础中的基础。它不仅适用于算法理论的学习,还广泛应用于数据库系统、文件系统以及任何需要快速查找和更新元素的系统中。掌握AVL树的实现对于提升软件效率、优化资源使用和降低算法的时间复杂度至关重要。 在本资源中,我们还需要关注"Java"这一标签。Java是一种广泛使用的面向对象的编程语言,它对数据结构的实现提供了良好的支持。利用Java语言实现AVL树,可以采用面向对象的方式来设计节点类和树类,实现节点插入、删除、旋转及树平衡等操作。Java代码具有很好的可读性和可维护性,因此是实现复杂数据结构的合适工具。 在实际应用中,Java程序员通常会使用Java集合框架中的TreeMap和TreeSet类,这两个类内部实现了红黑树(一种自平衡二叉搜索树),而不是AVL树。尽管如此,了解AVL树的原理对于理解这些高级数据结构的实现原理和使用场景是非常有帮助的。 最后,提及的"ALG3-TrabalhoArvore-master"是一个压缩包子文件的名称列表,暗示了该资源是一个关于AVL树的完整项目或教程。在这个项目中,用户可能可以找到完整的源代码、文档说明以及可能的测试用例。这些资源对于学习AVL树的实现细节和实践应用是宝贵的,可以帮助开发者深入理解并掌握AVL树的算法及其在实际编程中的运用。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【ggplot2绘图技巧】:R语言中的数据可视化艺术

![【ggplot2绘图技巧】:R语言中的数据可视化艺术](https://www.lecepe.fr/upload/fiches-formations/visuel-formation-246.jpg) # 1. ggplot2绘图基础 在本章节中,我们将开始探索ggplot2,这是一个在R语言中广泛使用的绘图系统,它基于“图形语法”这一理念。ggplot2的设计旨在让绘图过程既灵活又富有表现力,使得用户能够快速创建复杂而美观的图形。 ## 1.1 ggplot2的安装和加载 首先,确保ggplot2包已经被安装。如果尚未安装,可以使用以下命令进行安装: ```R install.p
recommend-type

HAL库怎样将ADC两个通道的电压结果输出到OLED上?

HAL库通常是指硬件抽象层(Hardware Abstraction Layer),它是一个软件组件,用于管理和控制嵌入式系统中的硬件资源,如ADC(模拟数字转换器)和OLED(有机发光二极管显示屏)。要将ADC读取的两个通道电压值显示到OLED上,你可以按照以下步骤操作: 1. **初始化硬件**: 首先,你需要通过HAL库的功能对ADC和OLED进行初始化。这包括配置ADC的通道、采样速率以及OLED的分辨率、颜色模式等。 2. **采集数据**: 使用HAL提供的ADC读取函数,读取指定通道的数据。例如,在STM32系列微控制器中,可能会有`HAL_ADC_ReadChannel()
recommend-type

小学语文教学新工具:创新黑板设计解析

资源摘要信息: 本资源为行业文档,主题是设计装置,具体关注于一种小学语文教学黑板的设计。该文档通过详细的设计说明,旨在为小学语文教学场景提供一种创新的教学辅助工具。由于资源的标题、描述和标签中未提供具体的设计细节,我们仅能从文件名称推测文档可能包含了关于小学语文教学黑板的设计理念、设计要求、设计流程、材料选择、尺寸规格、功能性特点、以及可能的互动功能等方面的信息。此外,虽然没有标签信息,但可以推断该文档可能针对教育技术、教学工具设计、小学教育环境优化等专业领域。 1. 教学黑板设计的重要性 在小学语文教学中,黑板作为传统而重要的教学工具,承载着教师传授知识和学生学习互动的重要角色。一个优秀的设计可以提高教学效率,激发学生的学习兴趣。设计装置时,考虑黑板的适用性、耐用性和互动性是非常必要的。 2. 教学黑板的设计要求 设计小学语文教学黑板时,需要考虑以下几点: - 安全性:黑板材质应无毒、耐磨损,边角处理要圆滑,避免在使用中造成伤害。 - 可视性:黑板的大小和高度应适合小学生使用,保证最远端的学生也能清晰看到上面的内容。 - 多功能性:黑板除了可用于书写字词句之外,还可以考虑增加多媒体展示功能,如集成投影幕布或电子白板等。 - 环保性:使用可持续材料,比如可回收的木材或环保漆料,减少对环境的影响。 3. 教学黑板的设计流程 一个典型的黑板设计流程可能包括以下步骤: - 需求分析:明确小学语文教学的需求,包括空间大小、教学方法、学生人数等。 - 概念设计:提出初步的设计方案,并对方案的可行性进行分析。 - 制图和建模:绘制详细的黑板平面图和三维模型,为生产制造提供精确的图纸。 - 材料选择:根据设计要求和成本预算选择合适的材料。 - 制造加工:按照设计图纸和材料标准进行生产。 - 测试与评估:在实际教学环境中测试黑板的使用效果,并根据反馈进行必要的调整。 4. 教学黑板的材料选择 - 传统黑板:传统的黑板多由优质木材和专用黑板漆制成,耐用且书写流畅。 - 绿色环保材料:考虑到环保和学生健康,可以选择无毒或低VOC(挥发性有机化合物)排放的材料。 - 智能材料:如可擦洗的特殊漆料,使黑板表面更加光滑,便于擦拭。 5. 教学黑板的尺寸规格 黑板的尺寸规格应根据实际教室空间和学生的平均身高来设计。一般来说,小学教室的黑板高度应设置在120cm至150cm之间,长度则根据教室墙壁的长度而定,但至少应保证可以容纳整页A4纸的书写空间。 6. 教学黑板的功能性特点 - 书写性能:黑板表面应具备良好的书写性能,使粉笔或马克笔的书写和擦拭都十分顺畅。 - 可视化辅助:集成的可视化工具,如辅助灯、放大镜等,可以帮助教师更有效地展示教学内容。 - 互动性设计:考虑增加互动性元素,例如磁性或可擦写的表面,可以提高学生参与度。 7. 教学黑板的互动功能 随着信息技术的发展,教学黑板可以集成多媒体技术,如触摸屏功能、电子白板功能、互联网接入等,实现与电子设备的互动,从而丰富教学手段,提高教学的趣味性和效率。 综上所述,本资源提供的设计装置文档,聚焦于一种小学语文教学黑板的设计,涵盖了从设计理念到功能实现的全方位内容,旨在通过创新的设计提升小学语文教学的品质和效率。