batch = 100 for i in range(0, len(train_data_list), batch): tensors = [torch.tensor(x) for x in train_data_list[i:i + batch]] torch.save(tensors, f"data_batch_{i}.pt") # 使用DataLoader逐批次加载数据 dataset = TensorDataset() for i in range(0, len(train_data_list), batch): tensors = torch.load(f"data_batch_{i}.pt") dataset += TensorDataset(*tensors) dataloader = DataLoader(dataset, batch_size=batch, shuffle=True, num_workers=4) for data in dataloader: print(data)
时间: 2024-02-02 19:04:42 浏览: 115
这段代码的作用是将训练数据分为大小为 `batch` 的小批次,然后使用 `torch.save` 将每个小批次的张量保存到硬盘上。接着,使用 `torch.load` 读取每个小批次的张量,将它们合并成一个 `TensorDataset` 对象,最后使用 `DataLoader` 加载数据并进行迭代训练。
你遇到了什么问题呢?请提供更多的信息,我可以帮助你解决问题。
相关问题
sentences = [x[0] for x in batch] labels = [x[1] for x in batch] # batch length batch_len = len(sentences) # 计算输入的最大长度(包含cls) max_len = max([len(s) for s in sentences]) # padding data 初始化 batch_data = self.word_pad_idx * np.ones((batch_len, max_len)) batch_label_starts = [] # padding sentence for j in range(batch_len): cur_len = len(sentences[j]) batch_data[j][:cur_len] = sentences[j] # padding label batch_labels = self.label_pad_idx * np.ones((batch_len, max_len-1)) # label长度比sent少cls for j in range(batch_len): cur_tags_len = len(labels[j]) batch_labels[j][:cur_tags_len] = labels[j] # convert data to torch LongTensors batch_data = torch.tensor(batch_data, dtype=torch.long) batch_labels = torch.tensor(batch_labels, dtype=torch.long) # shift tensors to GPU if available batch_data = batch_data.to(self.device) batch_labels = batch_labels.to(self.device) return [batch_data, batch_labels]
这段代码是上面提到的方法中的具体实现。首先,将batch中的句子和标签分别取出来,并计算出batch的长度和输入最大长度(包含cls)。然后,初始化一个填充后的数据batch_data,将每个句子进行padding,并将句子转化为torch LongTensors类型的数据。接着,对标签也进行padding,并将标签转化为torch LongTensors类型的数据。最后,将数据转移到GPU上(如果可用的话)并返回。总体来说,这段代码的作用是将数据进行填充和转化,以便于在模型中进行训练和预测。
test_loss = 0.0 class_correct = list(0. for i in range(2)) class_total = list(0. for i in range(2)) model.eval() # iterate over test data for data, target in test_loader: # move tensors to GPU if CUDA is available if train_on_gpu: data, target = data.cuda(), target.cuda() # forward pass: compute predicted outputs by passing inputs to the model output = model(data) # calculate the batch loss loss = criterion(output, target) # update test loss test_loss += loss.item()*data.size(0) # convert output probabilities to predicted class _, pred = torch.max(output, 1) # compare predictions to true label correct_tensor = pred.eq(target.data.view_as(pred)) correct = np.squeeze(correct_tensor.numpy()) if not train_on_gpu else np.squeeze(correct_tensor.cpu().numpy()) # calculate test accuracy for each object class for i in range(batch_size): label = target.data[i] class_correct[label] += correct[i].item() class_total[label] += 1 # average test loss test_loss = test_loss/len(test_loader.dataset) print('Test Loss: {:.6f}\n'.format(test_loss))哪里有问题
在代码中没有明显的错误,但有几个注意事项需要考虑:
1. 你需要确保 `test_loader` 是正确加载测试数据的。
2. `model.eval()` 用于将模型设置为评估模式,这会影响到一些层的行为,例如 `BatchNorm` 和 `Dropout`。
3. 确保 `criterion` 是正确的损失函数。
4. 如果你想计算每个类别的准确率,确保你的模型输出维度与类别数目相匹配。
阅读全文