cv2.calibrateCamera()怎么用

时间: 2023-06-04 07:05:47 浏览: 140
cv2.calibrateCamera()是OpenCV中的一个函数,用于相机标定。它需要两个输入参数,分别是物体点的坐标和图像点的坐标。以下是cv2.calibrateCamera()的使用步骤: 1.准备一组物体点和对应的图像点,可以通过模板或使用实际拍摄的图片找到这些点。 2.将这些点传递给cv2.calibrateCamera()。 3.cv2.calibrateCamera()会返回摄像机的内部参数矩阵(包括焦距、主点等)和外部参数矩阵(包括旋转和平移矩阵)。 4.使用cv2.undistort()函数对图像进行畸变矫正。 以下是cv2.calibrateCamera()的语法: ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None) 其中: objpoints:物体点 imgpoints:图像点 gray.shape[::-1]:图像的分辨率 None:摄像机的初始内部参数矩阵,如果没有则取默认值 None:畸变系数的初始值,如果没有则取默认值 ret:重投影误差 mtx:相机的内部参数矩阵 dist:畸变系数 rvecs:旋转向量 tvecs:平移向量 以上是cv2.calibrateCamera()的基本用法,具体的应用还需要根据场景和需求进行调整。
相关问题

cv2.calibrateCamera 使用例子

下面是一个使用cv2.calibrateCamera函数进行相机标定的例子: ```python import numpy as np import cv2 # 定义棋盘格的行列数 rows = 6 cols = 9 # 准备棋盘格角点的坐标 objp = np.zeros((cols*rows,3), np.float32) objp[:,:2] = np.mgrid[0:cols,0:rows].T.reshape(-1,2) # 创建存储对象点和图像点的数组 objpoints = [] # 存储3D对象点 imgpoints = [] # 存储2D图像点 # 加载图像 images = glob.glob('calibration_images/*.jpg') # 遍历图像进行标定 for fname in images: img = cv2.imread(fname) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # 查找棋盘格角点 ret, corners = cv2.findChessboardCorners(gray, (cols,rows),None) # 如果找到角点,则添加到对象点和图像点列表中 if ret == True: objpoints.append(objp) imgpoints.append(corners) # 在图像上绘制角点 cv2.drawChessboardCorners(img, (cols,rows), corners, ret) cv2.imshow('img',img) cv2.waitKey(500) # 标定相机 ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None) # 打印标定结果 print("Camera matrix : \n", mtx) print("Distortion Coefficients : \n", dist) ``` 这个例子中,我们使用cv2.findChessboardCorners函数来查找棋盘格的角点,然后使用cv2.calibrateCamera函数来标定相机并获取相机矩阵和畸变系数。

cv2.calibrateCamera

cv2.calibrateCamera是OpenCV中的一个函数,它用于相机标定。这个函数的作用是根据一系列的物体点和对应的图像点来计算相机的内参矩阵和畸变系数。在使用这个函数时,我们需要提供物体点的三维坐标和对应的图像点的二维坐标。通过这些点的对应关系,cv2.calibrateCamera可以计算出相机的内参矩阵(cameraMatrix)和畸变系数(distCoeffs),同时还可以得到每张图像对应的旋转矩阵(rvecs)和平移矩阵(tvecs)。 具体的使用方法是,首先将物体点和对应的图像点分别存储在两个数组中,然后调用cv2.calibrateCamera函数,并将这两个数组作为参数传入。此外,还需要提供图像的尺寸(imageSize)和一些可选的标志(flags)。函数会返回相机的内参矩阵、畸变系数、旋转矩阵和平移矩阵。 举个例子,可以使用cv2.calibrateCamera来进行棋盘格标定。首先,我们需要定义棋盘格的大小(cols和rows),以及物体点间的间距(distance)。然后,通过循环生成物体点的三维坐标(worldPoints)。接下来,调用cv2.findChessboardCorners函数来检测棋盘格的角点,并将检测到的角点存储在图像点的数组中(corners)。如果成功检测到角点,则将物体点数组和图像点数组作为参数传入cv2.calibrateCamera函数中,同时还需要传入图像的尺寸。函数会返回相机的内参矩阵(cameraMatrix)和畸变系数(distCoeffs)。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [OpenCV函数用法之calibrateCamera](https://blog.csdn.net/m0_49332456/article/details/121011500)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

相关推荐

运行#!/usr/bin/env python2.7 -- coding: UTF-8 -- import numpy as np import cv2 准备标定板参数 pattern = (9, 6) # 部角点数目 square_size = 25 # 每个棋盘格的边长(单位:毫米) 准备用于标定的图像路径(替换实际的图像路径) image_paths = [ 'pictures1.jpg', 'pictures2.jpg', 'pictures3.jpg', ] 创建存储角点和物体点的列表 obj_points = [] # 真实世界坐标点 img_points = [] # 图像平面角点 准备物体坐标 objp = np.zeros((pattern[0] * pattern[1], 3), np.float32) objp[:, :2] = np.mgrid[0:pattern[0], 0:pattern[1]].T.reshape(-1, 2) * square_size for image_path in image_paths: # 读取图像 img = cv2.imread(image_path) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 查找角点 ret, corners = cv2.findChessboardCorners(gray, pattern, None) if ret: obj_points.append(objp) img_points.append(corners) 进行相机标定 ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, gray.shape[::-1], None, None) 打印相机内参和畸变参数 print("相机内参 (Camera Matrix):\n", mtx) print("\n畸变系数 (Distortion Coefficients):\n", dist) 保存相机参数 np.save("camera_matrix.npy", mtx) np.save("dist_coeffs.npy", dist) 后显示gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) cv2.error: /build/opencv-XDqSFW/opencv-3.2.0+dfsg/modules/imgproc/src/color.cpp:9748: error: (-215) scn == 3 || scn == 4 in function cvtColor 会报错是因为图片通道数并非4,更改代码使它先将图片通道数变为4然后运行上述代码要求的功能

最新推荐

recommend-type

基于STM32控制遥控车的蓝牙应用程序

基于STM32控制遥控车的蓝牙应用程序
recommend-type

Memcached 1.2.4 版本源码包

粤嵌gec6818开发板项目Memcached是一款高效分布式内存缓存解决方案,专为加速动态应用程序和减轻数据库压力而设计。它诞生于Danga Interactive,旨在增强LiveJournal.com的性能。面对该网站每秒数千次的动态页面请求和超过七百万的用户群,Memcached成功实现了数据库负载的显著减少,优化了资源利用,并确保了更快的数据访问速度。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

软件项目开发全过程文档资料.zip

软件项目开发全过程文档资料.zip
recommend-type

Java基础上机题-分类整理版.doc

Java基础上机题-分类整理版
recommend-type

Java-JDBC学习教程-由浅入深.doc

Java-JDBC学习教程-由浅入深
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。