loss='mean_squared_error'是什么
时间: 2024-05-29 18:11:30 浏览: 187
loss='mean_squared_error'是一种损失函数,也称为均方误差(MSE)。它是用于衡量模型输出与真实值之间差异的标准方法之一。在机器学习中,我们使用损失函数来评估模型的性能,并通过反向传播算法来优化模型参数,以最小化损失函数。在回归问题中,MSE是一种常用的损失函数,它计算模型预测值与真实值之间的差异的平均值的平方。
相关问题
loss='mean_squared_error'
'Mean squared error' is a widely used loss function in machine learning that measures the difference between the predicted values and the actual values of the target variable. It is calculated as the average of the squared differences between the predicted and actual values, and is expressed as a single number. The goal of using this loss function is to minimize the difference between the predicted and actual values, which in turn improves the accuracy of the model.
loss='mean_squared_error'如何改为RMSE
在Keras中,可以使用`Root Mean Squared Error (RMSE)`作为损失函数,可以通过将`mean_squared_error`替换为`mean_squared_error`的平方根来实现。
具体代码如下:
```python
from keras.metrics import RootMeanSquaredError
model.compile(loss='mean_squared_error', optimizer='adam', metrics=[RootMeanSquaredError()])
```
在模型编译时,将损失函数设为`mean_squared_error`,并将指标(metrics)设为`RootMeanSquaredError()`,即可将损失函数改为RMSE。
阅读全文