以Tensorflow为框架编写带有更新温度系数alpha的SAC算法
时间: 2024-03-13 16:47:30 浏览: 91
好的,以下是使用TensorFlow框架编写带有更新温度系数alpha的SAC算法的示例代码:
```python
import tensorflow as tf
import numpy as np
class SAC:
def __init__(self, state_dim, action_dim, hidden_sizes=(256, 256), alpha=0.2, gamma=0.99, polyak=0.995, lr=3e-4):
self.state_dim = state_dim
self.action_dim = action_dim
self.hidden_sizes = hidden_sizes
self.alpha = alpha
self.gamma = gamma
self.polyak = polyak
self.lr = lr
self.sess = tf.Session()
self.x_ph = tf.placeholder(shape=(None, state_dim), dtype=tf.float32)
self.a_ph = tf.placeholder(shape=(None, action_dim), dtype=tf.float32)
self.x2_ph = tf.placeholder(shape=(None, state_dim), dtype=tf.float32)
self.r_ph = tf.placeholder(shape=(None,), dtype=tf.float32)
self.d_ph = tf.placeholder(shape=(None,), dtype=tf.float32)
self.q1, self.q2, self.q1_pi, self.q2_pi, self.pi, self.logp_pi = self._build_actor_critic(self.x_ph, self.a_ph)
self.q1_pi_targ, _, _, _, pi_targ, logp_pi_targ = self._build_actor_critic(self.x2_ph, self.a_ph)
self.q_pi = tf.minimum(self.q1_pi, self.q2_pi)
self.value_loss = tf.reduce_mean((self.q1 - self.v) ** 2) + tf.reduce_mean((self.q2 - self.v) ** 2)
self.q_loss = tf.reduce_mean((self.q1 - self.q_backup) ** 2) + tf.reduce_mean((self.q2 - self.q_backup) ** 2)
self.pi_loss = tf.reduce_mean(self.alpha * self.logp_pi - self.q_pi)
self.alpha_ph = tf.placeholder(shape=(), dtype=tf.float32)
self.alpha_loss = -tf.reduce_mean(self.alpha_ph * tf.stop_gradient(self.logp_pi + self.target_entropy))
self.train_vf = tf.train.AdamOptimizer(learning_rate=self.lr).minimize(self.value_loss)
self.train_q = tf.train.AdamOptimizer(learning_rate=self.lr).minimize(self.q_loss)
self.train_pi = tf.train.AdamOptimizer(learning_rate=self.lr).minimize(self.pi_loss)
self.train_alpha = tf.train.AdamOptimizer(learning_rate=self.lr).minimize(self.alpha_loss)
self.target_v = tf.placeholder(shape=(None,), dtype=tf.float32)
self.target_update = tf.group([tf.assign(v_targ, self.polyak * v_targ + (1 - self.polyak) * v_main)
for v_main, v_targ in zip(self.v_params, self.v_params_targ)])
self.q_backup = tf.stop_gradient(self.r_ph + self.gamma * (1 - self.d_ph) * self.q1_pi_targ)
self.sess.run(tf.global_variables_initializer())
self.sess.run(self.target_update)
def _build_actor_critic(self, x, a):
with tf.variable_scope('pi'):
pi = self._mlp(x, self.action_dim, self.hidden_sizes)
logp_pi = self._squash_log_prob(self._gaussian_likelihood(pi, pi, log_std=-2.0))
with tf.variable_scope('q1'):
q1 = tf.squeeze(self._mlp(tf.concat([x, a], axis=-1), 1, self.hidden_sizes), axis=-1)
with tf.variable_scope('q2'):
q2 = tf.squeeze(self._mlp(tf.concat([x, a], axis=-1), 1, self.hidden_sizes), axis=-1)
with tf.variable_scope('v'):
v = tf.squeeze(self._mlp(x, 1, self.hidden_sizes), axis=-1)
v_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='v')
v_params_targ = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='v_targ')
return q1, q2, pi, logp_pi, v, v_params, v_params_targ
def _mlp(self, x, output_dim, hidden_sizes):
for h in hidden_sizes[:-1]:
x = tf.nn.relu(tf.layers.dense(x, units=h))
return tf.layers.dense(x, units=output_dim)
def _gaussian_likelihood(self, x, mu, log_std):
pre_sum = -0.5 * (((x - mu) / (tf.exp(log_std) + 1e-8)) ** 2 + 2 * log_std + np.log(2 * np.pi))
return tf.reduce_sum(pre_sum, axis=1)
def _squash_log_prob(self, log_prob):
return log_prob - 2 * (tf.log(2.0) - tf.nn.softplus(2 * log_prob))
def update(self, x, a, x2, r, d):
self.sess.run(self.train_vf, feed_dict={self.x_ph: x, self.a_ph: a, self.r_ph: r, self.d_ph: d})
self.sess.run(self.train_q, feed_dict={self.x_ph: x, self.a_ph: a, self.x2_ph: x2, self.r_ph: r, self.d_ph: d})
self.sess.run(self.train_pi, feed_dict={self.x_ph: x, self.alpha_ph: self.alpha})
self.sess.run(self.train_alpha, feed_dict={self.x_ph: x, self.alpha_ph: self.alpha})
self.sess.run(self.target_update)
def get_action(self, x):
return self.sess.run(self.pi, feed_dict={self.x_ph: x})
def get_alpha(self, x):
return self.sess.run(self.alpha, feed_dict={self.x_ph: x})
```
其中,`alpha`是温度系数的初始值,`target_entropy`是策略熵的目标值,`train_alpha`是用于更新温度系数的优化器。在训练过程中,可以通过调用`get_alpha`方法获得当前的温度系数值。
阅读全文