epoch, train/box_loss, train/obj_loss, train/cls_loss, metrics/precision, metrics/recall, metrics/mAP_0.5,metrics/mAP_0.5:0.95, val/box_loss, val/obj_loss, val/cls_loss, x/lr0, x/lr1, x/lr2表示什么
时间: 2024-02-05 19:04:23 浏览: 421
这是一个目标检测模型训练过程中的日志信息,其中各个指标的含义如下:
- epoch: 表示训练到第几轮;
- train/box_loss: 表示训练集中bounding box回归损失的平均值;
- train/obj_loss: 表示训练集中objectness损失的平均值;
- train/cls_loss: 表示训练集中分类损失的平均值;
- metrics/precision: 表示模型在训练集上的平均精确度;
- metrics/recall: 表示模型在训练集上的平均召回率;
- metrics/mAP_0.5: 表示模型在训练集上的平均AP(平均精度),其中IoU阈值为0.5;
- metrics/mAP_0.5:0.95: 表示模型在训练集上的平均AP(平均精度),其中IoU阈值从0.5到0.95;
- val/box_loss: 表示验证集中bounding box回归损失的平均值;
- val/obj_loss: 表示验证集中objectness损失的平均值;
- val/cls_loss: 表示验证集中分类损失的平均值;
- x/lr0: 表示当前学习率的大小;
- x/lr1: 表示当前第一个阶段的学习率大小;
- x/lr2: 表示当前第二个阶段的学习率大小。
相关问题
epoch_loss = len(train_data)/batch_size 是什么意思
在机器学习中,假设训练数据集包含 `N` 个样本,`batch_size` 表示每个 batch 包含的样本数,则经过 `N/batch_size` 个 batch 就可以将所有样本都用于训练一次,这被称为一个 epoch。因此,可以计算一个 epoch 中包含多少个 batch:
```
num_batches_per_epoch = N / batch_size
```
在训练过程中,我们通常会记录每个 batch 的损失值,并计算一个 epoch 的平均损失值。如果将所有 batch 的损失值保存在一个列表 `losses` 中,则可以通过以下方式计算一个 epoch 的平均损失值:
```
epoch_loss = sum(losses) / num_batches_per_epoch
```
由于 `num_batches_per_epoch` 等于 `N / batch_size`,因此可以将上面的式子简化为:
```
epoch_loss = sum(losses) * batch_size / N
```
这个式子表示一个 epoch 的平均损失值等于所有 batch 的损失值之和乘以 `batch_size` 再除以样本总数 `N`。这个式子可以用来计算训练过程中每个 epoch 的平均损失值,帮助我们评估模型的训练效果。
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
这是一个典型的训练日志,用于记录每个 epoch 的 GPU 内存占用、边界框损失、目标损失和分类损失等指标,以及训练集中实例的数量和大小等信息。通常,GPU 内存占用随着训练的进行而逐渐增加,而损失值应该随着训练的进行而逐渐减小。同时,实例数量和大小等信息可以帮助我们了解训练数据的特点,以便更好地调整模型和优化训练过程。
阅读全文