#include <stdio.h> #include <stdlib.h> typedef struct LNode{ int data1; int data2; struct LNode *next; }LNode,*Linklist; int Compare(int a,int b); //比较一元多项式的系数函数 void Attach(int a1,int a2,Linklist *Prear); //链表连接函数 void Print (Linklist L); Linklist Creat() //建表 { Linklist L,r; L=(Linklist)malloc(sizeof(Linklist)); L->next=NULL; r=L; int i,j; printf("请输入系数和指数,以空格隔开,以00结束!\n"); scanf("%d %d",&i,&j); while(i!=0&&j!=0) { Linklist p; p=(Linklist)malloc(sizeof(Linklist)); p->data1=i; p->data2=j; r->next=p; r=p; scanf("%d %d",&i,&j); } r->next=NULL; return L; } Linklist Add(Linklist P,Linklist Q) { LNode *rear,L; rear=(Linklist)malloc(sizeof(Linklist)); L=rear; int sum; P=P->next; Q=Q->next; while(P&&Q) { switch(Compare(P->data2,Q->data2)) { case 1: Attach(Q->data1,Q->data2,&rear); Q=Q->next; break; case -1: Attach(P->data1,P->data2,&rear); P=P->next; break; case 0: sum = P->data1 + Q->data1; if(sum) Attach(sum,P->data2,&rear); P=P->next; Q=Q->next; break; } } for(P;P!=NULL;P=P->next) //没有比较完的P或Q Attach(P->data1,P->data2,&rear); for(Q;Q!=NULL;Q=Q->next) Attach(Q->data1,Q->data2,&rear); rear->next=NULL; return L; } void Print(Linklist L) { if(!L) printf("xxxx"); Linklist p; p=L->next; printf("相加结果为:\n"); while(p!=NULL) { printf("+%dx^%d",p->data1,p->data2); p=p->next; } } void Attach(int a1,int a2,Linklist *c) { Linklist p; p=(Linklist)malloc(sizeof(Linklist)); p->data1=a1; p->data2=a2; p->next=NULL; (*c)->next=p; *c=p; } int Compare(int a,int b) { if(a>b) return 1; else if(a<b) return -1; else return 0; } int main() { Linklist P,Q,R; P=Creat(); Q=Creat(); R=Add(P,Q); Print(R); return 0; }设计思路
时间: 2024-04-01 21:37:59 浏览: 46
这段代码实现了两个一元多项式相加的功能,具体的设计思路如下:
1. 定义一个结构体LNode表示一元多项式的每一项,其中包括两个整型数据data1和data2,分别表示该项的系数和指数,以及一个指向下一项的指针next。
2. 定义一个链表类型Linklist,表示一元多项式。
3. 定义比较函数Compare,用于比较两项的指数大小。
4. 定义连接函数Attach,用于将新的一项连接到链表的尾部。
5. 定义建表函数Creat,用于创建一元多项式,通过输入系数和指数,以00结束。
6. 定义相加函数Add,用于实现两个一元多项式的相加,通过比较两项的指数大小,将相同指数的项的系数相加,不同指数的项直接连接到结果链表中。
7. 定义打印函数Print,用于输出相加结果。
8. 在主函数中,通过调用Creat函数创建两个一元多项式P和Q,然后调用Add函数将它们相加,最后调用Print函数输出结果。
以上就是这段代码的设计思路,希望能对你有所帮助。
相关问题
# include < stdio. h> # include < stdlib. h> typedef int ElemType; typedef struct LNode { ElemType
这是一个C语言程序中的部分代码,涉及到头文件的包含和数据结构的声明。`#include <stdio.h>` 和 `#include <stdlib.h>` 是用来引入标准输入输出库以及标准库函数,如内存管理和I/O操作。
`typedef int ElemType;` 定义了一个新的类型别名 `ElemType`,通常在数据结构中用于元素类型,例如链表中的节点元素。
接着,`typedef struct LNode` 开始定义一个名为 `LNode` 的结构体,这通常是用来表示链表的节点。在链表中,每个节点一般包含两个部分:一个是存储数据的域(`ElemType data;`,这个部分会被 `ElemType` 替换),另一个可能是指向下一个节点的指针(`struct LNode* next;`)。完整的结构体可能会像这样:
```c
typedef int ElemType;
typedef struct LNode {
ElemType data; // 节点的数据域
struct LNode* next; // 指向下一个节点的指针
} LNode;
```
#include <stdio.h> #include <stdlib.h> typedef int ElemType; typedef struct LNode { ElemType da
`#include <stdio.h>`和`#include <stdlib.h>`是C语言中的两个头文件。`<stdio.h>`是标准输入输出头文件,提供了一些用于输入输出的函数和宏定义。`<stdlib.h>`是标准库头文件,提供了一些常用的函数和宏定义,如内存分配、随机数生成等。
在你的代码中,`typedef int ElemType;`定义了一个类型别名,将`int`类型命名为`ElemType`。
`typedef struct LNode`定义了一个结构体类型`LNode`,结构体是一种自定义的数据类型,可以包含多个不同类型的成员变量。在这里,`LNode`结构体中的成员变量还没有完整定义,因此代码截断了。
阅读全文