给定一个 k 位整数 n=d \r\nk−1\r\n​\r\n 10 \r\nk−1\r\n +⋯+d \r\n1\r\n​\r\n 10 \r\n1\r\n +d \r\n0\r\n​\r\n (0≤d \r\ni\r\n​\r\n ≤9, i=0,⋯,k−1

时间: 2023-05-02 10:05:35 浏览: 161
这道题目是要我们找到一个k位数n,满足n的第一位是-1,第k位是d,而且n-1是10的倍数。 具体的情况可以通过列举几个数字来进行分析: 当k=2时,可得到的数字为-10、-20、-30、-40、-50、-60、-70、-80、-90。 当k=3时,可得到的数字为-109、-118、-127、-136、-145、-154、-163、-172、-181、-190。 当k=4时,可得到的数字为-1090、-1180、-1270、-1360、-1450、-1540、-1630、-1720、-1810、-1900。 可以发现,当k为偶数时,n-1的最后一位就是0,因此d的取值只能为0或5。 当k为奇数时,n-1的最后两位为90时,n就是10的倍数,此时d的取值可以为任何一个数字。 因此,该题的答案为: 当k为偶数时,d可以取0或5。 当k为奇数时,d可以取0、1、2、3、4、5、6、7、8、9。
相关问题

用C++写一下这道题的代码:给定一个 1×1的方格矩阵,方格为白色: 你需要对该矩阵进行 k 次扩张操作,并输出最终得到的矩阵。 扩张操作的具体规则如下。 首先,给定一个 n×n 的方格矩阵,其中的每个方格要么是白色,要么是黑色,称此矩阵为模板矩阵。 在进行扩张操作时,当前矩阵中的每个方格都将扩张为一个 n×n 的方格矩阵,其中: 每个白色方格扩张得到的方格矩阵与模板矩阵相同。 每个黑色方格扩张得到的方格矩阵只包含黑色方格。 输入格式 第一行包含两个整数 n,k 。 接下来 n 行,每行包含 n 个字符,每个字符要么为 .,要么为 *,其中第 i 行第 j 个字符用来描述模板矩阵第 i 行第 j 列的方格颜色,. 表示白色,* 表示黑色。 保证模板矩阵中至少包含一个白色方格。 输出格式 输出一个 nk×nk 的字符矩阵,用来表示最终得到的矩阵。 . 表示白色方格,* 表示黑色方格。

以下是另一种使用 C++ 实现的代码: ```cpp #include <iostream> #include <vector> using namespace std; const int N = 20; char grid[N][N]; vector<vector<char>> mat(N * N, vector<char>(N * N)); void expand(int r, int c, int len) { for (int i = r * len; i < (r + 1) * len; i++) { for (int j = c * len; j < (c + 1) * len; j++) { mat[i][j] = grid[r][c]; } } } int main() { int n, k; cin >> n >> k; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { cin >> grid[i][j]; } } for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (grid[i][j] == '.') // 白色方格与模板矩阵相同 { expand(i, j, k); } else // 黑色方格只包含黑色 { for (int r = 0; r < k; r++) { for (int c = 0; c < k; c++) { for (int x = r * n; x < (r + 1) * n; x++) { for (int y = c * n; y < (c + 1) * n; y++) { mat[x][y] = '*'; } } } } } } } for (int i = 0; i < k * n; i++) { for (int j = 0; j < k * n; j++) { cout << mat[i][j]; } cout << endl; } return 0; } ``` 输入示例: ``` 2 2 . * * . ``` 输出示例: ``` . . * * . . * * * * . . * * . . ```

给定一个 k 位整数 n=d \nk−1\n​\t\n 10 \nk−1\n +⋯+d \n1\n​\t\n 10 \n1\n +d \n0\n​\t\n (0≤d \ni\n​\t\n ≤9, i=0,⋯,k−1, d \nk−1\n​

### 回答1: 根据题意,给定一个整数 k 和一个 k 位整数 n=d[k-1]d[k-2]...d[1]d[0],其中每一位数字 d[i] 满足 0≤d[i]≤9,需要计算以下两个值: 1. 数字 n-1,n-2,...,n-k+1 的和。 2. 数字 n-1,n-2,...,n-k+1 的十进制表示中,所有数字 1 的个数。 下面分别介绍两种解法: 解法一:暴力模拟 可以直接模拟数字 n-1,n-2,...,n-k+1,计算它们的和并统计其中数字 1 的个数。具体地,我们可以从 n-1 开始逐个减去 1,每次减完之后将得到的数按位分解,统计其中数字 1 的个数即可。对于每个数字,可以用取模和除法来依次获取它的各个位。 算法的时间复杂度为 O(k(n-1)),其中 n 是输入整数,k 是它的位数。 解法二:找规律 我们可以尝试找到数字 n-1,n-2,...,n-k+1 的和和数字 1 的个数之间的规律。不难发现,这两个问题的答案都只与数字 d[k-1]~d[0] 有关,与其他位上的数字无关。 设 S 表示数字 n-1,n-2,...,n-k+1 的和,C 表示其中数字 1 的个数,则有: S = (d[k-1]-1)×10^(k-1) + (d[k-2]-1)×10^(k-2) + ... + (d[1]-1)×10 + d[0]×k C = (d[k-1]≥1) + (d[k-2]≥1) + ... + (d[1]≥1) + (d[0]≥1) + (d[k-1]-1)×(k-1)×10^(k-2) + (d[k-2])×(k-2)×10^(k-3) + ... + (d[1])×1×10^0 可以用上面的公式计算出 S 和 C。 算法的时间复杂度为 O(k),可以很快计算出结果。 ### 回答2: 这个给定的 k 位整数,可以看做是由 k 个数字 d 组成,其中第一个数字是 d0,第二个数字是 d1,以此类推,最后一位数字是 d(k-1)。我们可以把它写成一个数列的形式: (d0,d1,d2,...,d(k-1)) 其中,我们可以把这个数列按照倒序排序,得到如下的数列: (d(k-1),d(k-2),...,d1,d0) 这个数列就是这个 k 位整数的倒序表示。例如,对于整数 12345,它的倒序表示就是 54321。 这个数列还可以转化成一个数,只需要依次把每一位数字乘上相应的权值,再相加即可。这个权值的计算方法很简单:第 i 位数字的权值是 10^(k-i-1)。例如,在整数 12345 中,第二位数字为 2,它的权值为 10^(5-2-1)=1000。因此,可以把整数 12345 转化成:1×10^4+2×10^3+3×10^2+4×10^1+5×10^0=12345。 对于这个 k 位整数,我们除了可以得到它的倒序表示和它对应的数值表示之外,还可以得到它的各位数字之和。各位数字之和可以通过把这个数列中的所有数字相加得到,即: d0+d1+d2+...+d(k-1) 这样,我们就得到了给定的 k 位整数的三种表示方法,分别是倒序表示、数值表示和各位数字之和。 ### 回答3: 题目描述: 给定一个k位整数n=d[k-1]d[k-2]…d[1]d[0] (0≤dk-1,dk-2,…,d1,d0≤9),请编写程序求出这个数对10^9+7取模后的值。 解题思路: 这道题实际上就是求一个大数对10^9+7取模的余数,由于数非常大,我们不能直接进行求余,需要用到一些数学上的技巧。 因为我们知道(a+b)%p=(a%p+b%p)%p,所以可以想到,对于一个数n,我们可以将它拆分为若干个简单的数相加,然后对每个简单数取余之后再相加,就可以得到最终的余数,即 (d[0]*10^0 + d[1]*10^1 + … + d[k-1]*10^(k-1))%M = ((d[0] % M)*10^0 + (d[1] % M)*10^1 + … + (d[k-1] % M)*10^(k-1))%M。 由于这个式子中的幂次已经是很大的,所以这么做的话仍然会溢出,不过我们还可以做一些小优化,比如使用快速幂来计算每个10的幂次的值,这样就可以避免溢出问题。 所以我们可以写一个循环遍历每个数位,先使用快速幂计算出对应的10的幂次的值,然后将每个位数上的数对M取余之后再乘上对应的幂次值,最后再累加起来就可以得到结果了。 参考代码:
阅读全文

相关推荐

最新推荐

recommend-type

Spring Boot Starter-kit:含多种技术应用,如数据库、认证机制,有应用结构.zip

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

包含 Spring Boot 等系列技术参考指南中文版及相关资源的仓库.zip

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

高清艺术文字图标资源,PNG和ICO格式免费下载

资源摘要信息:"艺术文字图标下载" 1. 资源类型及格式:本资源为艺术文字图标下载,包含的图标格式有PNG和ICO两种。PNG格式的图标具有高度的透明度以及较好的压缩率,常用于网络图形设计,支持24位颜色和8位alpha透明度,是一种无损压缩的位图图形格式。ICO格式则是Windows操作系统中常见的图标文件格式,可以包含不同大小和颜色深度的图标,通常用于桌面图标和程序的快捷方式。 2. 图标尺寸:所下载的图标尺寸为128x128像素,这是一个标准的图标尺寸,适用于多种应用场景,包括网页设计、软件界面、图标库等。在设计上,128x128像素提供了足够的面积来展现细节,而大尺寸图标也可以方便地进行缩放以适应不同分辨率的显示需求。 3. 下载数量及内容:资源提供了12张艺术文字图标。这些图标可以用于个人项目或商业用途,具体使用时需查看艺术家或资源提供方的版权声明及使用许可。在设计上,艺术文字图标融合了艺术与文字的元素,通常具有一定的艺术风格和创意,使得图标不仅具备标识功能,同时也具有观赏价值。 4. 设计风格与用途:艺术文字图标往往具有独特的设计风格,可能包括手绘风格、抽象艺术风格、像素艺术风格等。它们可以用于各种项目中,如网站设计、移动应用、图标集、软件界面等。艺术文字图标集可以在视觉上增加内容的吸引力,为用户提供直观且富有美感的视觉体验。 5. 使用指南与版权说明:在使用这些艺术文字图标时,用户应当仔细阅读下载页面上的版权声明及使用指南,了解是否允许修改图标、是否可以用于商业用途等。一些资源提供方可能要求在使用图标时保留作者信息或者在产品中适当展示图标来源。未经允许使用图标可能会引起版权纠纷。 6. 压缩文件的提取:下载得到的资源为压缩文件,文件名称为“8068”,意味着用户需要将文件解压缩以获取里面的PNG和ICO格式图标。解压缩工具常见的有WinRAR、7-Zip等,用户可以使用这些工具来提取文件。 7. 具体应用场景:艺术文字图标下载可以广泛应用于网页设计中的按钮、信息图、广告、社交媒体图像等;在应用程序中可以作为启动图标、功能按钮、导航元素等。由于它们的尺寸较大且具有艺术性,因此也可以用于打印材料如宣传册、海报、名片等。 通过上述对艺术文字图标下载资源的详细解析,我们可以看到,这些图标不仅是简单的图形文件,它们集合了设计美学和实用功能,能够为各种数字产品和视觉传达带来创新和美感。在使用这些资源时,应遵循相应的版权规则,确保合法使用,同时也要注重在设计时根据项目需求对图标进行适当调整和优化,以获得最佳的视觉效果。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

DMA技术:绕过CPU实现高效数据传输

![DMA技术:绕过CPU实现高效数据传输](https://res.cloudinary.com/witspry/image/upload/witscad/public/content/courses/computer-architecture/dmac-functional-components.png) # 1. DMA技术概述 DMA(直接内存访问)技术是现代计算机架构中的关键组成部分,它允许外围设备直接与系统内存交换数据,而无需CPU的干预。这种方法极大地减少了CPU处理I/O操作的负担,并提高了数据传输效率。在本章中,我们将对DMA技术的基本概念、历史发展和应用领域进行概述,为读
recommend-type

SGM8701电压比较器如何在低功耗电池供电系统中实现高效率运作?

SGM8701电压比较器的超低功耗特性是其在电池供电系统中高效率运作的关键。其在1.4V电压下工作电流仅为300nA,这种低功耗水平极大地延长了电池的使用寿命,尤其适用于功耗敏感的物联网(IoT)设备,如远程传感器节点。SGM8701的低功耗设计得益于其优化的CMOS输入和内部电路,即使在电池供电的设备中也能提供持续且稳定的性能。 参考资源链接:[SGM8701:1.4V低功耗单通道电压比较器](https://wenku.csdn.net/doc/2g6edb5gf4?spm=1055.2569.3001.10343) 除此之外,SGM8701的宽电源电压范围支持从1.4V至5.5V的电
recommend-type

mui框架HTML5应用界面组件使用示例教程

资源摘要信息:"HTML5基本类模块V1.46例子(mui角标+按钮+信息框+进度条+表单演示)-易语言" 描述中的知识点: 1. HTML5基础知识:HTML5是最新一代的超文本标记语言,用于构建和呈现网页内容。它提供了丰富的功能,如本地存储、多媒体内容嵌入、离线应用支持等。HTML5的引入使得网页应用可以更加丰富和交互性更强。 2. mui框架:mui是一个轻量级的前端框架,主要用于开发移动应用。它基于HTML5和JavaScript构建,能够帮助开发者快速创建跨平台的移动应用界面。mui框架的使用可以使得开发者不必深入了解底层技术细节,就能够创建出美观且功能丰富的移动应用。 3. 角标+按钮+信息框+进度条+表单元素:在mui框架中,角标通常用于指示未读消息的数量,按钮用于触发事件或进行用户交互,信息框用于显示临时消息或确认对话框,进度条展示任务的完成进度,而表单则是收集用户输入信息的界面组件。这些都是Web开发中常见的界面元素,mui框架提供了一套易于使用和自定义的组件实现这些功能。 4. 易语言的使用:易语言是一种简化的编程语言,主要面向中文用户。它以中文作为编程语言关键字,降低了编程的学习门槛,使得编程更加亲民化。在这个例子中,易语言被用来演示mui框架的封装和使用,虽然描述中提到“如何封装成APP,那等我以后再说”,暗示了mui框架与移动应用打包的进一步知识,但当前内容聚焦于展示HTML5和mui框架结合使用来创建网页应用界面的实例。 5. 界面美化源码:文件的标签提到了“界面美化源码”,这说明文件中包含了用于美化界面的代码示例。这可能包括CSS样式表、JavaScript脚本或HTML结构的改进,目的是为了提高用户界面的吸引力和用户体验。 压缩包子文件的文件名称列表中的知识点: 1. mui表单演示.e:这部分文件可能包含了mui框架中的表单组件演示代码,展示了如何使用mui框架来构建和美化表单。表单通常包含输入字段、标签、按钮和其他控件,用于收集和提交用户数据。 2. mui角标+按钮+信息框演示.e:这部分文件可能展示了mui框架中如何实现角标、按钮和信息框组件,并进行相应的事件处理和样式定制。这些组件对于提升用户交互体验至关重要。 3. mui进度条演示.e:文件名表明该文件演示了mui框架中的进度条组件,该组件用于向用户展示操作或数据处理的进度。进度条组件可以增强用户对系统性能和响应时间的感知。 4. html5标准类1.46.ec:这个文件可能是核心的HTML5类库文件,其中包含了HTML5的基础结构和类定义。"1.46"表明这是特定版本的类库文件,而".ec"文件扩展名可能是易语言项目中的特定格式。 总结来说,这个资源摘要信息涉及到HTML5的前端开发、mui框架的界面元素实现和美化、易语言在Web开发中的应用,以及如何利用这些技术创建功能丰富的移动应用界面。通过这些文件和描述,可以学习到如何利用mui框架实现常见的Web界面元素,并通过易语言将这些界面元素封装成移动应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【数据传输高速公路】:总线系统的深度解析

![计算机组成原理知识点](https://img-blog.csdnimg.cn/6ed523f010d14cbba57c19025a1d45f9.png) # 1. 总线系统概述 在计算机系统和电子设备中,总线系统扮演着至关重要的角色。它是一个共享的传输介质,用于在组件之间传递数据和控制信号。无论是单个芯片内部的互连,还是不同设备之间的通信,总线技术都是不可或缺的。为了实现高效率和良好的性能,总线系统必须具备高速传输能力、高效的数据处理能力和较高的可靠性。 本章节旨在为读者提供总线系统的初步了解,包括其定义、历史发展、以及它在现代计算机系统中的应用。我们将讨论总线系统的功能和它在不同层
recommend-type

如何结合PID算法调整PWM信号来优化电机速度控制?请提供实现这一过程的步骤和代码示例。

为了优化电机的速度控制,结合PID算法调整PWM信号是一种常见且有效的方法。这里提供一个具体的实现步骤和代码示例,帮助你深入理解这一过程。 参考资源链接:[Motor Control using PWM and PID](https://wenku.csdn.net/doc/6412b78bbe7fbd1778d4aacb?spm=1055.2569.3001.10343) 首先,确保你已经有了一个可以输出PWM波形的硬件接口,例如Arduino或者其他微控制器。接下来,你需要定义PID控制器的三个主要参数:比例(P)、积分(I)、微分(D),这些参数决定了控制器对误差的响应速度和方式。