graph = _get_default_graph() File "C:\ProgramData\Anaconda3\envs\py37\lib\site-packages\keras\backend\tensorflow_backend.py", line 69, in _get_default_graph 'It looks like you are trying to use ' RuntimeError: It looks like you are trying to use a version of multi-backend Keras that does not support TensorFlow 2.0. We recommend using `tf.keras`, or alternatively, downgrading to TensorFlow 1.14.
时间: 2023-11-27 18:04:34 浏览: 96
这个错误是由于你使用的 Keras 版本不支持 TensorFlow 2.0 导致的。建议你使用 tf.keras 或者将 TensorFlow 版本降级到 1.14。你可以尝试在代码中使用以下语句来切换到 tf.keras:
```python
from tensorflow import keras
```
然后使用 `keras` 而非 `keras.backend`。如果你需要使用 `keras.backend`,可以这样导入:
```python
from tensorflow.keras import backend as K
```
这样就可以避免使用旧版的 Keras。
相关问题
D:\Anaconda\envs\tf1\python.exe C:/Users/夏芷琳/Desktop/VAE-LSTM-for-anomaly-detection-master/codes/train.py Traceback (most recent call last): File "C:/Users/夏芷琳/Desktop/VAE-LSTM-for-anomaly-detection-master/codes/train.py", line 2, in <module> import tensorflow as tf File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\__init__.py", line 24, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\python\__init__.py", line 52, in <module> from tensorflow.core.framework.graph_pb2 import * File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\core\framework\graph_pb2.py", line 15, in <module> from tensorflow.core.framework import node_def_pb2 as tensorflow_dot_core_dot_framework_dot_node__def__pb2 File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\core\framework\node_def_pb2.py", line 15, in <module> from tensorflow.core.framework import attr_value_pb2 as tensorflow_dot_core_dot_framework_dot_attr__value__pb2 File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\core\framework\attr_value_pb2.py", line 15, in <module> from tensorflow.core.framework import tensor_pb2 as tensorflow_dot_core_dot_framework_dot_tensor__pb2 File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\core\framework\tensor_pb2.py", line 15, in <module> from tensorflow.core.framework import resource_handle_pb2 as tensorflow_dot_core_dot_framework_dot_resource__handle__pb2 File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\core\framework\resource_handle_pb2.py", line 41, in <module> serialized_options=None, file=DESCRIPTOR), File "D:\Anaconda\envs\tf1\lib\site-packages\google\protobuf\descriptor.py", line 561, in __new__ _message.Message._CheckCalledFromGeneratedFile() TypeError: Descriptors cannot not be created directly. If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0. If you cannot immediately regenerate your protos, some other possible workarounds are: 1. Downgrade the protobuf package to 3.20.x or lower. 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower). More information: https://developers.google.com/protocol-buffers/docs/news/2022-05-06#python-updates
根据错误信息,这个问题是由于你的生成的代码(`_pb2.py`文件)与你安装的protobuf版本不兼容导致的。
根据错误提示,你需要重新生成你的protobuf代码,使用protoc版本大于等于3.19.0来进行生成。这样可以确保生成的代码与你安装的protobuf版本兼容。
你可以按照以下步骤重新生成protobuf代码:
1. 确保你已经安装了最新版本的protobuf。你可以使用以下命令来升级protobuf:
```
pip install --upgrade protobuf
```
2. 确保你已经安装了protoc编译器,并且其版本大于等于3.19.0。你可以在命令行中运行以下命令来检查protoc版本:
```
protoc --version
```
如果protoc版本低于3.19.0,请更新到最新版本。你可以在Protocol Buffers的官方网站上找到适合你操作系统的安装包。
3. 使用更新后的protoc编译器重新生成protobuf代码。在命令行中运行以下命令:
```
protoc -I=<proto文件目录> --python_out=<生成代码目录> <proto文件>
```
其中,`<proto文件目录>`是包含proto文件的目录,`<生成代码目录>`是你想要生成代码的目录,`<proto文件>`是你要生成代码的proto文件名。
重新生成protobuf代码后,再运行你的程序,应该就能够解决这个问题了。如果问题仍然存在,你可以尝试降级protobuf包的版本,或者设置`PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python`环境变量来使用纯Python解析,但后者会导致解析速度较慢。
请确保按照官方文档中提供的链接获取更多信息,并根据你的具体情况进行调整。
C:\Anaconda3\python.exe C:/pycharm.z/neo.py Traceback (most recent call last): File "C:\Anaconda3\lib\site-packages\py2neo\client\__init__.py", line 806, in acquire cx = self._free_list.popleft() IndexError: pop from an empty deque During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\Anaconda3\lib\site-packages\py2neo\client\bolt.py", line 810, in _audit task.audit() File "C:\Anaconda3\lib\site-packages\py2neo\client\bolt.py", line 1303, in audit raise self._failure py2neo.errors.ClientError: [Security.Unauthorized] The client is unauthorized due to authentication failure. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\pycharm.z\neo.py", line 4, in <module> graph = Graph("bolt://localhost:7687", auth=("neo4j", "password")) File "C:\Anaconda3\lib\site-packages\py2neo\database.py", line 288, in __init__ self.service = GraphService(profile, **settings) File "C:\Anaconda3\lib\site-packages\py2neo\database.py", line 119, in __init__ self._connector = Connector(profile, **connector_settings) File "C:\Anaconda3\lib\site-packages\py2neo\client\__init__.py", line 960, in __init__ self._add_pools(*self._initial_routers) File "C:\Anaconda3\lib\site-packages\py2neo\client\__init__.py", line 982, in _add_pools pool = ConnectionPool.open( File "C:\Anaconda3\lib\site-packages\py2neo\client\__init__.py", line 649, in open seeds = [pool.acquire() for _ in range(init_size or cls.default_init_size)] File "C:\Anaconda3\lib\site-packages\py2neo\client\__init__.py", line 649, in <listcomp> seeds = [pool.acquire() for _ in range(init_size or cls.default_init_size)] File "C:\Anaconda3\lib\site-packages\py2neo\client\__init__.py", line 813, in acquire cx = self._connect() File "C:\Anaconda3\lib\site-packages\py2neo\client\__init__.py", line 764, in _connect cx = Connection.open(self.profile, user_agent=self怎么解决
根据您提供的错误信息,出现了两个异常:IndexError和ClientError。IndexError表示连接池中没有可用的连接,而ClientError表示由于身份验证失败而导致未经授权的客户端。
解决这些问题的步骤如下:
1. 确保您提供的Neo4j数据库URL和凭据是正确的。检查URL中的主机名、端口号以及凭据的用户名和密码是否与您在Neo4j中设置的一致。
2. 确保Neo4j数据库正在运行并监听正确的端口。您可以尝试通过浏览器访问Neo4j的管理界面来验证数据库是否可用。
3. 检查防火墙设置,确保允许连接到Neo4j数据库所使用的端口。
4. 如果您在使用用户名和密码进行身份验证时仍然遇到问题,可以尝试更改身份验证方法。例如,您可以尝试使用Kerberos或LDAP进行身份验证,具体取决于您在Neo4j中的配置。
5. 确保您的py2neo库版本是最新的。您可以使用以下命令升级py2neo库:
```
pip install --upgrade py2neo
```
如果问题仍然存在,请检查您的代码是否有其他问题,并考虑向Neo4j社区寻求更多帮助。
阅读全文