生成一个openMV色块识别并返回色块位置发送给串口的Python代码
时间: 2023-03-11 14:30:37 浏览: 212
答案:from openmv import py_camera, color_find# 获取摄像头
camera = py_camera.OpenMVCamera()while(True):
# 捕获一帧图像
img = camera.capture()
# 找到色块并返回位置
blobs = color_find.find_blobs(img, color)
if blobs:
x, y, w, h = blobs[0]
# 将位置发送给串口
serial.write('x: %d, y: %d' % (x, y))
相关问题
写一个基于openmv摄像头识别红绿蓝三种色块,并用串口发送,并至少使用卡尔曼滤波的代码
以下是基于OpenMV摄像头识别红绿蓝三种色块并使用卡尔曼滤波的代码:
```python
import sensor
import image
import time
import pyb
from kalman_filter import *
# 初始化串口
uart = pyb.UART(3, 9600, timeout_char=1000)
# 初始化卡尔曼滤波器
kf_red = KalmanFilter(1, 1)
kf_green = KalmanFilter(1, 1)
kf_blue = KalmanFilter(1, 1)
# 设置色块阈值
red_threshold = (30, 100, 15, 80, 15, 70)
green_threshold = (30, 100, -50, -10, -50, -10)
blue_threshold = (15, 50, -50, -10, 0, 30)
# 初始化摄像头
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.skip_frames(time = 2000)
sensor.set_auto_gain(False)
sensor.set_auto_whitebal(False)
# 主循环
while(True):
# 获取图像
img = sensor.snapshot()
# 识别红色色块
blobs_red = img.find_blobs([red_threshold], pixels_threshold=200, area_threshold=200)
if blobs_red:
# 获取红色色块的中心点坐标
x, y, w, h = blobs_red[0].rect()
x_center = x + int(w / 2)
y_center = y + int(h / 2)
# 使用卡尔曼滤波器更新坐标
x_center_filtered, y_center_filtered = kf_red.update([x_center, y_center])
# 发送坐标到串口
uart.write("red: X={0:d}, Y={1:d}\n".format(int(x_center_filtered), int(y_center_filtered)))
# 在图像上标记红色色块
img.draw_rectangle(blobs_red[0].rect())
img.draw_cross(x_center_filtered, y_center_filtered)
# 识别绿色色块
blobs_green = img.find_blobs([green_threshold], pixels_threshold=200, area_threshold=200)
if blobs_green:
# 获取绿色色块的中心点坐标
x, y, w, h = blobs_green[0].rect()
x_center = x + int(w / 2)
y_center = y + int(h / 2)
# 使用卡尔曼滤波器更新坐标
x_center_filtered, y_center_filtered = kf_green.update([x_center, y_center])
# 发送坐标到串口
uart.write("green: X={0:d}, Y={1:d}\n".format(int(x_center_filtered), int(y_center_filtered)))
# 在图像上标记绿色色块
img.draw_rectangle(blobs_green[0].rect())
img.draw_cross(x_center_filtered, y_center_filtered)
# 识别蓝色色块
blobs_blue = img.find_blobs([blue_threshold], pixels_threshold=200, area_threshold=200)
if blobs_blue:
# 获取蓝色色块的中心点坐标
x, y, w, h = blobs_blue[0].rect()
x_center = x + int(w / 2)
y_center = y + int(h / 2)
# 使用卡尔曼滤波器更新坐标
x_center_filtered, y_center_filtered = kf_blue.update([x_center, y_center])
# 发送坐标到串口
uart.write("blue: X={0:d}, Y={1:d}\n".format(int(x_center_filtered), int(y_center_filtered)))
# 在图像上标记蓝色色块
img.draw_rectangle(blobs_blue[0].rect())
img.draw_cross(x_center_filtered, y_center_filtered)
# 延时
time.sleep(10)
```
其中,`kalman_filter.py`文件是卡尔曼滤波器的实现,如下所示:
```python
class KalmanFilter:
def __init__(self, n, m):
self.A = array([[1, 0], [0, 1]])
self.H = array([[1, 0], [0, 1]])
self.Q = 0.01 * eye(n)
self.R = 1 * eye(m)
self.P = 0.1 * eye(2)
self.x = zeros((2, 1))
def update(self, z):
# Prediction
self.x = dot(self.A, self.x)
self.P = dot(dot(self.A, self.P), self.A.T) + self.Q
# Correction
y = z - dot(self.H, self.x)
S = dot(dot(self.H, self.P), self.H.T) + self.R
K = dot(dot(self.P, self.H.T), inv(S))
self.x = self.x + dot(K, y)
self.P = dot((eye(2) - dot(K, self.H)), self.P)
return self.x.ravel()
```
openmv色块识别寻迹
OpenMV是一款基于STM32F427CPU的硬件模块,集成了OV7725摄像头芯片,并使用C语言实现了核心机器视觉算法,同时提供了Python编程接口。它的机器视觉算法包括寻找色块、人脸检测、眼球跟踪、边缘检测、标志跟踪等功能。[1]
在进行色块识别寻迹时,首先需要设定要识别的颜色阈值。例如,如果要识别黑线,可以设置对应颜色的阈值。在代码中,可以使用阈值来定义需要跟踪的颜色。[2]
接下来,在主函数部分,通过调用摄像头获取图像帧,并进行畸变矫正。然后使用find_blobs函数来检测图像中的色块,根据返回的结果判断是否检测到黑线。通过设置flag数组的相应位置来记录检测结果。[3]
最后,在串口通信部分,可以通过串口与其他设备进行通信,将检测到的结果传输给其他设备进行处理。
总结来说,OpenMV可以通过设定颜色阈值和调用相应函数来实现色块识别寻迹的功能。
阅读全文