feature_df.iloc[:, -1]

时间: 2024-05-21 08:18:44 浏览: 114
PDF

pandas数据选取:df[] df.loc[] df.iloc[] df.ix[] df.at[] df.iat[]

star5星 · 资源好评率100%
这行代码是从 Pandas 数据框(DataFrame)中选择所有行和最后一列,返回一个包含最后一列数据的 Pandas Series 对象。 更具体地说,`iloc` 方法可以通过指定行和列的位置来选择数据,它的语法是 `iloc[行, 列]`。在这个例子中,我们使用 `:` 表示选择所有行,`-1` 表示选择最后一列。因此,`feature_df.iloc[:, -1]` 表示选择 `feature_df` 数据框中的所有行和最后一列,返回一个包含最后一列数据的 Pandas Series 对象。
阅读全文

相关推荐

# seeds = [2222, 5, 4, 2, 209, 4096, 2048, 1024, 2015, 1015, 820]#11 seeds = [2]#2 num_model_seed = 1 oof = np.zeros(X_train.shape[0]) prediction = np.zeros(X_test.shape[0]) feat_imp_df = pd.DataFrame({'feats': feature_name, 'imp': 0}) parameters = { 'learning_rate': 0.008, 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'num_leaves': 63, 'feature_fraction': 0.8,#原来0.8 'bagging_fraction': 0.8, 'bagging_freq': 5,#5 'seed': 2, 'bagging_seed': 1, 'feature_fraction_seed': 7, 'min_data_in_leaf': 20, 'verbose': -1, 'n_jobs':4 } fold = 5 for model_seed in range(num_model_seed): print(seeds[model_seed],"--------------------------------------------------------------------------------------------") oof_cat = np.zeros(X_train.shape[0]) prediction_cat = np.zeros(X_test.shape[0]) skf = StratifiedKFold(n_splits=fold, random_state=seeds[model_seed], shuffle=True) for index, (train_index, test_index) in enumerate(skf.split(X_train, y)): train_x, test_x, train_y, test_y = X_train[feature_name].iloc[train_index], X_train[feature_name].iloc[test_index], y.iloc[train_index], y.iloc[test_index] dtrain = lgb.Dataset(train_x, label=train_y) dval = lgb.Dataset(test_x, label=test_y) lgb_model = lgb.train( parameters, dtrain, num_boost_round=10000, valid_sets=[dval], early_stopping_rounds=100, verbose_eval=100, ) oof_cat[test_index] += lgb_model.predict(test_x,num_iteration=lgb_model.best_iteration) prediction_cat += lgb_model.predict(X_test,num_iteration=lgb_model.best_iteration) / fold feat_imp_df['imp'] += lgb_model.feature_importance() del train_x del test_x del train_y del test_y del lgb_model oof += oof_cat / num_model_seed prediction += prediction_cat / num_model_seed gc.collect()解释上面的python代码

import numpy as np import pandas as pd from scipy.stats import kstest #from sklearn import preprocessing # get a column from dataframe def select_data(data, ny): yName = data.columns[ny] Y = data[yName] return Y # see which feature is normally distributed from dataframe def normal_test(df): for i in range(len(df.columns)): y = select_data(df,i) p = kstest(y,'norm') print("feature {}, p-value = {}".format(i,p[1])) # rescale feature i in dataframe def standard_rescale(df, i): y = select_data(df,i) m = np.mean(y) s = np.std(y) y = (y-m)/s return y # log-transform feature of dataframe def log_transform(df,i): y = select_data(df,i) y = np.log(y) return y # square root transform feature of dataframe def sqrt_transform(df,i): y = select_data(df,i) y = np.sqrt(y) return y # cube root transform feature of dataframe def cbrt_transform(df,i): y = select_data(df,i) y = np.cbrt(y) return y # transform dataframe into one of: standard, log, sqrt, cbrt def transform_dataframe(df, transformation): df_new = [] if transformation == "standard": for i in range(len(df.columns)-1): y = standard_rescale(df,i) df_new.append(y) df_new.append(df.iloc[:,no_feats]) elif transformation == "log": for i in range(len(df.columns)-1): y = log_transform(df,i) df_new.append(y) df_new.append(df.iloc[:,no_feats]) elif transformation == "sqrt": for i in range(len(df.columns)-1): y = sqrt_transform(df,i) df_new.append(y) df_new.append(df.iloc[:,no_feats]) elif transformation == "cbrt": for i in range(len(df.columns)-1): y = cbrt_transform(df,i) df_new.append(y) df_new.append(df.iloc[:,no_feats]) else: return "wrong arguments" df_new = pd.DataFrame(df_new) df_new = df_new.T return df_new df = pd.read_csv('iris.csv') no_feats = 4 df.columns =['0', '1', '2', '3', '4'] #normal_test(df) df_standard = transform_dataframe(df, "standard") #df_log = transform_dataframe(df, "log") #df_sqrt = transform_dataframe(df, "sqrt") #df_cbrt = transform_dataframe(df, "cbrt") #df_wrong = transform_dataframe(df, "lo") #print("standard-----------------------------------------") #normal_test(df_standard) #print("log-----------------------------------------") #normal_test(df_log) #print("square root-----------------------------------------") #normal_test(df_sqrt) #print("cube root-----------------------------------------") #normal_test(df_cbrt) result = df_standard # create new csv file with new dataframe result.to_csv(r'iris_std.csv', index = False, header=True)解释每一行代码

import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense # 读取Excel文件 data = pd.read_excel('D://数据1.xlsx', sheet_name='8') # 把数据分成输入和输出 X = data.iloc[:, 0:8].values y = data.iloc[:, 0:8].values # 对输入和输出数据进行归一化 scaler_X = MinMaxScaler(feature_range=(0, 4)) X = scaler_X.fit_transform(X) scaler_y = MinMaxScaler(feature_range=(0, 4)) y = scaler_y.fit_transform(y) # 将数据集分成训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0) # 创建神经网络模型 model = Sequential() model.add(Dense(units=8, input_dim=8, activation='relu')) model.add(Dense(units=64, activation='relu')) model.add(Dense(units=8, activation='relu')) model.add(Dense(units=8, activation='linear')) # 编译模型 model.compile(loss='mean_squared_error', optimizer='sgd') # 训练模型 model.fit(X_train, y_train, epochs=230, batch_size=1000) # 评估模型 score = model.evaluate(X_test, y_test, batch_size=1258) print('Test loss:', score) # 使用训练好的模型进行预测 X_test_scaled = scaler_X.transform(X_test) y_pred = model.predict(X_test_scaled) # 对预测结果进行反归一化 y_pred_int = scaler_y.inverse_transform(y_pred).round().astype(int) # 计算预测的概率 mse = ((y_test - y_pred) ** 2).mean(axis=None) probabilities = 1 / (1 + mse - ((y_pred_int - y_test) ** 2).mean(axis=None)) # 构建带有概率的预测结果 y_pred_prob = pd.DataFrame(y_pred_int, columns=data.columns[:8]) y_pred_prob['Probability'] = probabilities # 过滤掉和小于6或大于24的行 row_sums = np.sum(y_pred, axis=1) y_pred_filtered = y_pred[(row_sums >= 6) & (row_sums <= 6), :] # 去除重复的行 y_pred_filtered = y_pred_filtered.drop_duplicates() # 打印带有概率的预测结果 print('Predicted values with probabilities:') print(y_pred_filtered)显示Traceback (most recent call last): File "D:\pycharm\PyCharm Community Edition 2023.1.1\双色球8分区预测模型.py", line 61, in <module> y_pred_filtered = y_pred_filtered.drop_duplicates() AttributeError: 'numpy.ndarray' object has no attribute 'drop_duplicates'怎么修改

用Python帮我写一个程序:后缀为csv的波士顿房价数据文件存放在文件夹路径csv_file_dir中。按下列考试要求进行数据处理: 1.读取数据文件中的所有数据为DataFrame格式,保留第0行的表头作为列名。获得样本列名为y_target列赋值给y,除此之外的13列赋值给X; 2.使用sklearn中的sklearn.feature_selection.VarianceThreshold定义基于方差的筛选模型,方差阈值threshold设置为10,其他参数保持默认值; 3.使用fit_transform训练2定义的筛选模型返回选出的新的特征X_new; 4.将第3步得到的特征数据X_new与y按列合并处理成新的DataFrame,按student_answer_path生成csv文件并保存,编码方式采用‘UTF-8’,所有值保留3位小数,小数点后尾部的0无需保存,如:0.200直接保存成0.2,不保留列名及行索引。 提示 df = pd.read_csv(filepath,header) # filepath相对路径,header默认为0,header=None时,表头读为表的信息不做列名 sklearn.feature_selection.VarianceThreshold(threshold) # 定义筛选模型 fit_transform(X, y) # 训练模型 np.concatenate((arr1, arr2), axis=1) # ndarray 拼接 np.round(x, 3) # 对x保留3位小数 df.to_csv(savepath, index=False, encoding='UTF-8') # index参数表示保存为.csv文件是否保留index 输出示例 0.00632,18.0,2.31,65.2,1.0,296.0,396.9,4.98,24.0 0.02731,0.0,7.07,78.9,2.0,242.0,396.9,9.14,21.6 0.02729,0.0,7.07,61.1,2.0,242.0,392.83,4.03,34.7;import os os.chdir(os.path.dirname(__file__)) import pandas as pd import numpy as np from sklearn.feature_selection import VarianceThreshold csv_file_dir='./data' student_answer_path='./csv_answer.csv'

最新推荐

recommend-type

java+sql server项目之科帮网计算机配件报价系统源代码.zip

sql server+java项目之科帮网计算机配件报价系统源代码
recommend-type

【java毕业设计】智慧社区老人健康监测门户.zip

有java环境就可以运行起来 ,zip里包含源码+论文+PPT, 系统设计与功能: 文档详细描述了系统的后台管理功能,包括系统管理模块、新闻资讯管理模块、公告管理模块、社区影院管理模块、会员上传下载管理模块以及留言管理模块。 系统管理模块:允许管理员重新设置密码,记录登录日志,确保系统安全。 新闻资讯管理模块:实现新闻资讯的添加、删除、修改,确保主页新闻部分始终显示最新的文章。 公告管理模块:类似于新闻资讯管理,但专注于主页公告的后台管理。 社区影院管理模块:管理所有视频的添加、删除、修改,包括影片名、导演、主演、片长等信息。 会员上传下载管理模块:审核与删除会员上传的文件。 留言管理模块:回复与删除所有留言,确保系统内的留言得到及时处理。 环境说明: 开发语言:Java 框架:ssm,mybatis JDK版本:JDK1.8 数据库:mysql 5.7及以上 数据库工具:Navicat11及以上 开发软件:eclipse/idea Maven包:Maven3.3及以上
recommend-type

【java毕业设计】智慧社区心理咨询平台(源代码+论文+PPT模板).zip

zip里包含源码+论文+PPT,有java环境就可以运行起来 ,功能说明: 文档开篇阐述了随着计算机技术、通信技术和网络技术的快速发展,智慧社区门户网站的建设成为了可能,并被视为21世纪信息产业的主要发展方向之一 强调了网络信息管理技术、数字化处理技术和数字式信息资源建设在国际竞争中的重要性。 指出了智慧社区门户网站系统的编程语言为Java,数据库为MYSQL,并实现了新闻资讯、社区共享、在线影院等功能。 系统设计与功能: 文档详细描述了系统的后台管理功能,包括系统管理模块、新闻资讯管理模块、公告管理模块、社区影院管理模块、会员上传下载管理模块以及留言管理模块。 系统管理模块:允许管理员重新设置密码,记录登录日志,确保系统安全。 新闻资讯管理模块:实现新闻资讯的添加、删除、修改,确保主页新闻部分始终显示最新的文章。 公告管理模块:类似于新闻资讯管理,但专注于主页公告的后台管理。 社区影院管理模块:管理所有视频的添加、删除、修改,包括影片名、导演、主演、片长等信息。 会员上传下载管理模块:审核与删除会员上传的文件。 留言管理模块:回复与删除所有留言,确保系统内的留言得到及时处理。
recommend-type

计算机系统基础实验LinkLab实验及解答:深入理解ELF文件与链接过程

内容概要:本文档详细介绍了LinkLab实验的五个阶段,涵盖了ELF文件的组成、符号表的理解、代码节与重定位位置的修改等内容。每个阶段都有具体的实验要求和步骤,帮助学生理解链接的基本概念和链接过程中涉及的各项技术细节。 适合人群:计算机科学专业的本科生,特别是正在修读《计算机系统基础》课程的学生。 使用场景及目标:① 通过实际操作加深对链接过程和ELF文件的理解;② 掌握使用readelf、objdump和hexedit等工具的技巧;③ 实现特定输出以验证实验结果。 阅读建议:实验过程中的每个阶段都有明确的目标和提示,学生应按照步骤逐步操作,并结合反汇编代码和二进制编辑工具进行实践。在完成每个阶段的实验后,应及时记录实验结果和遇到的问题,以便于总结和反思。
recommend-type

基于关键词的历时百度搜索指数自动采集资料齐全+详细文档+高分项目+源码.zip

【资源说明】 基于关键词的历时百度搜索指数自动采集资料齐全+详细文档+高分项目+源码.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"