MATLAB相机标定在增强现实中的应用:赋能现实与虚拟的融合

发布时间: 2024-06-08 18:50:42 阅读量: 63 订阅数: 51
![matlab相机标定](https://img-blog.csdnimg.cn/20190811212504704.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3UwMTMyODkyNTQ=,size_16,color_FFFFFF,t_70) # 1. 增强现实概述** **1.1 增强现实的概念与技术** 增强现实(AR)是一种将虚拟信息叠加到真实世界中的技术。它通过摄像头、传感器和显示器等设备,将数字内容与物理环境相结合,从而创造出一种增强现实体验。AR技术利用计算机视觉、图像处理和空间定位等技术,将虚拟物体与现实场景无缝融合,为用户提供沉浸式交互体验。 **1.2 增强现实的应用领域** AR技术广泛应用于各个领域,包括: * **工业制造:**用于组装指导、质量控制和远程协助。 * **医疗保健:**用于手术规划、培训和可视化。 * **教育:**用于互动学习、虚拟实验和沉浸式体验。 * **零售:**用于虚拟试衣、产品展示和增强购物体验。 * **娱乐:**用于游戏、增强现实电影和互动体验。 # 2. MATLAB相机标定理论 ### 相机标定的原理和方法 相机标定是确定相机内参和外参的过程。内参描述相机的固有特性,包括焦距、主点和畸变系数。外参描述相机在世界坐标系中的位置和姿态,包括平移向量和旋转矩阵。 #### 针孔相机模型 针孔相机模型是一种简化的相机模型,它假设光线通过一个单一的点(针孔)进入相机,并投射到图像平面上。该模型可以表示为: ``` [x, y] = f * [X / Z, Y / Z] ``` 其中: * (x, y) 是图像平面上点的坐标 * (X, Y, Z) 是世界坐标系中点的坐标 * f 是焦距 #### 标定板设计与标定过程 标定板是一种具有已知几何形状和尺寸的图案,用于相机标定。标定过程包括: 1. **获取图像:**使用相机拍摄标定板在不同位置和方向的图像。 2. **检测角点:**在图像中检测标定板上的角点。 3. **求解相机参数:**使用角点的位置和标定板的已知尺寸,求解相机的内参和外参。 ### 相机标定参数的意义和应用 相机标定参数对于增强现实至关重要,因为它可以: * **校正图像畸变:**畸变是由镜头的非线性引起的,相机标定可以校正这些畸变,从而提高图像质量。 * **确定相机位置和姿态:**相机标定可以确定相机在世界坐标系中的位置和姿态,这对于增强现实中的定位和跟踪至关重要。 * **估计深度:**通过立体视觉,相机标定可以估计图像中物体的深度,这对于增强现实中的交互和沉浸感至关重要。 ### 代码示例:MATLAB相机标定工具箱 MATLAB提供了相机标定工具箱,它包含用于相机标定的一系列函数。以下代码示例演示了如何使用该工具箱进行相机标定: ``` % 获取标定图像 images = dir('*.jpg'); % 检测角点 points = detectCheckerboardPoints(images); % 标定相机 cameraParams = estimateCameraParameters(points); % 显示相机参数 disp(cameraParams); ``` **代码逻辑分析:** * `detectCheckerboardPoints` 函数检测标定板上的角点。 * `estimateCameraParameters` 函数使用角点的位置和标定板的已知尺寸,估计相机的内参和外参。 * `disp` 函数显示相机参数,包括焦距、主点和畸变系数。 **参数说明:** * `images`:标定图像的路径。 * `points`:角点的坐标。 * `cameraParams`:相机参数结构体,包含焦距、主点和畸变系数。 # 3. MATLAB相机标定实践** ### 3.1 MATLAB中的相机标定工具箱 MATLAB提供了用于相机标定的专用工具箱,名为`Camera Calibration Toolbox`。该工具箱提供了用于相机标定过
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

zip
matlab 相机标定代码 摄像机标定(Camera calibration)简单来说是从世界坐标系换到图像坐标系的过程,也就是求最终的投影矩阵的过程。 [1]基本的坐标系: 世界坐标系; 相机坐标系; 成像平面坐标系; 像素坐标系 [2]一般来说,标定的过程分为两个部分: 第一步是从世界坐标系转为相机坐标系,这一步是三维点到三维点的转换,包括R,t(相机外参,确定了相机在某个三维空间中的位置和朝向)等参数; 第二部是从相机坐标系转为成像平面坐标系(像素坐标系),这一步是三维点到二维点的转换,包括K(相机内参,是对相机物理特性的近似)等参数; 投影矩阵 : P=K [ R | t ] 是一个3×4矩阵,混合了内参和外参而成。 P=K[Rt] 二.基本知识介绍及 1、摄像机模型 Pinhole Camera模型如下图所示: 摄像机模型与标定 - 小企鹅 - 企鹅的博客 是一个小孔成像的模型,其中: [1]O点表示camera centre,即相机的中心点,也是相机坐标系的中心点; [2]z轴表示principal axis,即相机的主轴; [3]q点所在的平面表示image plane,即相机的像平面,也就是图片坐标系所在的二维平面; [4]O1点表示principal point,即主点,主轴与像平面相交的点; [5]O点到O1点的距离,也就是右边图中的f,即相机的焦距; [6]像平面上的x和y坐标轴是与相机坐标系上的X和Y坐标轴互相平行的; [7]相机坐标系是以X,Y,Z(大写)三个轴组成的且原点在O点,度量值为米(m); [8]像平面坐标系是以x,y(小写)两个轴组成的且原点在O1点,度量值为米(m); [9]像素坐标系一般指图片相对坐标系,在这里可以认为和像平面坐标系在一个平面上,不过原点是在图片的角上,而且度量值为像素的个数(pixel); 2、相机坐标系→成像平面坐标系 [1]以O点为原点建立摄像机坐标系。点Q(X,Y,Z)为摄像机坐标系空间中的一点,该点被光线投影到图像平面上的q(x,y,f)点。 图像平面与光轴z轴垂直,和投影中心距离为f (f是相机的焦距)。按照三角比例关系可以得出: x/f = X/Z y/f = Y/Z ,即 x = fX/Z y = fY/Z 以图像平面的左上角或左下角为原点建立坐标系。假设像平面坐标系原点位于图像左下角,水平向右为u轴,垂直向上为v轴,均以像素为单位。 以图像平面与光轴的交点O1 为原点建立坐标系,水平向右为x轴,垂直向上为y轴。原点O1一般位于图像中心处,O1在以像素为单位的图像坐标系中的坐标为(u0, v0)。 像平面坐标系和像素坐标系虽然在同一个平面上,但是原点并不是同一个。 摄像机模型与标定 - 小企鹅 - 企鹅的博客 设每个像素的物理尺寸大小为 dx * dy (mm) ( 由于单个像素点投影在图像平面上是矩形而不是正方形,因此可能dx != dy), 图像平面上某点在成像平面坐标系中的坐标为(x, y),在像素坐标系中的坐标为(u, v),则二者满足如下关系:[即(x, y)→(u, v)] u = x / dx + u0 v = y / dy + v0 用齐次坐标与矩阵形式表示为: 摄像机模型与标定 - 小企鹅 - 企鹅的博客 将等式两边都乘以点Q(X,Y,Z)坐标中的Z可得: 摄像机模型与标定 - 小企鹅 - 企鹅的博客 将摄像机坐标系中的(1)式代入上式可得: 则右边第一个矩阵和第二个矩阵的乘积亦为摄像机的内参数矩阵(单位为像素),相乘后可得: (2) 和(1)式相比,此内参数矩阵中f/dx, f/dy, cx/dx+u0, cy/dy+v0 的单位均为像素。令内参数矩阵为K,则上式可写成: 摄像机模型与标定 - 小企鹅 - 企鹅的博客 (3) 三.相机内参K(与棋盘所在空间的3D几何相关) 在计算机视觉中,摄像机内参数矩阵 其中 f 为摄像机的焦距,单位一般是mm;dx,dy 为像元尺寸;u0,v0 为图像中心。 fx = f/dx, fy = f/dy,分别称为x轴和y轴上的归一化焦距. 为更好的理解,举个实例: 现以NiKon D700相机为例进行求解其内参数矩阵: 就算大家身边没有这款相机也无所谓,可以在网上百度一下,很方便的就知道其一些参数—— 焦距 f = 35mm 最高分辨率:4256×2832 传感器尺寸:36.0×23.9 mm 根据以上定义可以有: u0= 4256/2 = 2128 v0= 2832/2 = 1416 dx = 36.0/4256 dy = 23.9/2832 fx = f/dx = 4137.8 fy = f/dy = 4147.3 分辨率可以从显示分辨率与图像分辨率两个方向来分类。 [1]显示分辨率(屏幕分辨率)是屏幕图像的精密度,是指显示器所能显示的像素有多少。由于屏幕上的点、线和面都是由像素组成的, 显示器可显示的像素越多,画面就越精细,同样的屏幕区域内能显示的信息也越多,所以分辨率是个非常重要的性能指标之一。 可以把整个图像想象成是一个大型的棋盘,而分辨率的表示方式就是所有经线和纬线交叉点的数目。 显示分辨率一定的情况下,显示屏越小图像越清晰,反之,显示屏大小固定时,显示分辨率越高图像越清晰。 [2]图像分辨率则是单位英寸中所包含的像素点数,其定义更趋近于分辨率本身的定义。 四.畸变参数(与点集如何畸变的2D几何相关。) 采用理想针孔模型,由于通过针孔的光线少,摄像机曝光太慢,在实际使用中均采用透镜,可以使图像生成迅速,但代价是引入了畸变。 有两种畸变对投影图像影响较大: 径向畸变和切向畸变。 1、径向畸变 对某些透镜,光线在远离透镜中心的地方比靠近中心的地方更加弯曲,产生“筒形”或“鱼眼”现象,称为径向畸变。 一般来讲,成像仪中心的径向畸变为0,越向边缘移动,畸变越严重。不过径向畸变可以通过下面的泰勒级数展开式来校正: xcorrected = x(1+k1r2+k2r4+k3r6) ycorrected = y(1+k1r2+k2r4+k3r6) 这里(x, y)是畸变点在成像仪上的原始位置,r为该点距离成像仪中心的距离,(xcorrected ,ycorrected )是校正后的新位置。 对于一般的摄像机校正,通常使用泰勒级数中的前两项k1和k2就够了;对畸变很大的摄像机,比如鱼眼透镜,可以使用第三径向畸变项k3 2、切向畸变 当成像仪被粘贴在摄像机的时候,会存在一定的误差,使得图像平面和透镜不完全平行,从而产生切向畸变。也就是说,如果一个矩形被投影到成像仪上时, 可能会变成一个梯形。切向畸变可以通过如下公式来校正: xcorrected = x + [ 2p1y + p2 (r2 + 2x2) ] ycorrected = y + [ 2p2x + p1 (r2 + 2y2) ] 这里(x, y)是畸变点在成像仪上的原始位置,r为该点距离成像仪中心的距离,(xcorrected ,ycorrected )是校正后的新位置。 五.摄像机的外参数 旋转向量(大小为1×3的矢量或旋转矩阵3×3)和平移向量(tx,ty,tz)。 旋转向量:旋转向量是旋转矩阵紧凑的变现形式,旋转向量为1×3的行矢量。 r就是旋转向量,旋转向量的方向是旋转轴 ,旋转向量的模为围绕旋转轴旋转的角度。 通过上面的公式,我们就可以求解出旋转矩阵R。同样的已知旋转矩阵,我们也可以通过下面的公式求解得到旋转向量: 。

SW_孙维

开发技术专家
知名科技公司工程师,开发技术领域拥有丰富的工作经验和专业知识。曾负责设计和开发多个复杂的软件系统,涉及到大规模数据处理、分布式系统和高性能计算等方面。
专栏简介
本专栏深入探讨了 MATLAB 相机标定的原理、实践和应用。从理论基础到实战指南,它提供了全面而深入的知识。专栏涵盖了标定参数的揭秘、误差分析、工具箱使用指南以及在图像处理、机器人视觉、医学影像、工业检测、无人驾驶、虚拟现实、增强现实、人脸识别、手势识别、动作捕捉和生物特征识别等领域的应用。通过深入理解相机标定技术,读者可以提升标定精度,优化标定流程,并探索标定结果在各种领域的价值,从而为计算机视觉和图像处理应用提供坚实的基础。

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

【品牌化的可视化效果】:Seaborn样式管理的艺术

![【品牌化的可视化效果】:Seaborn样式管理的艺术](https://aitools.io.vn/wp-content/uploads/2024/01/banner_seaborn.jpg) # 1. Seaborn概述与数据可视化基础 ## 1.1 Seaborn的诞生与重要性 Seaborn是一个基于Python的统计绘图库,它提供了一个高级接口来绘制吸引人的和信息丰富的统计图形。与Matplotlib等绘图库相比,Seaborn在很多方面提供了更为简洁的API,尤其是在绘制具有多个变量的图表时,通过引入额外的主题和调色板功能,大大简化了绘图的过程。Seaborn在数据科学领域得

大样本理论在假设检验中的应用:中心极限定理的力量与实践

![大样本理论在假设检验中的应用:中心极限定理的力量与实践](https://images.saymedia-content.com/.image/t_share/MTc0NjQ2Mjc1Mjg5OTE2Nzk0/what-is-percentile-rank-how-is-percentile-different-from-percentage.jpg) # 1. 中心极限定理的理论基础 ## 1.1 概率论的开篇 概率论是数学的一个分支,它研究随机事件及其发生的可能性。中心极限定理是概率论中最重要的定理之一,它描述了在一定条件下,大量独立随机变量之和(或平均值)的分布趋向于正态分布的性

NumPy在金融数据分析中的应用:风险模型与预测技术的6大秘籍

![NumPy在金融数据分析中的应用:风险模型与预测技术的6大秘籍](https://d31yv7tlobjzhn.cloudfront.net/imagenes/990/large_planilla-de-excel-de-calculo-de-valor-en-riesgo-simulacion-montecarlo.png) # 1. NumPy基础与金融数据处理 金融数据处理是金融分析的核心,而NumPy作为一个强大的科学计算库,在金融数据处理中扮演着不可或缺的角色。本章首先介绍NumPy的基础知识,然后探讨其在金融数据处理中的应用。 ## 1.1 NumPy基础 NumPy(N

数据清洗的概率分布理解:数据背后的分布特性

![数据清洗的概率分布理解:数据背后的分布特性](https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-022-10145-8/MediaObjects/11222_2022_10145_Figa_HTML.png) # 1. 数据清洗的概述和重要性 数据清洗是数据预处理的一个关键环节,它直接关系到数据分析和挖掘的准确性和有效性。在大数据时代,数据清洗的地位尤为重要,因为数据量巨大且复杂性高,清洗过程的优劣可以显著影响最终结果的质量。 ## 1.1 数据清洗的目的 数据清洗

正态分布与信号处理:噪声模型的正态分布应用解析

![正态分布](https://img-blog.csdnimg.cn/38b0b6e4230643f0bf3544e0608992ac.png) # 1. 正态分布的基础理论 正态分布,又称为高斯分布,是一种在自然界和社会科学中广泛存在的统计分布。其因数学表达形式简洁且具有重要的统计意义而广受关注。本章节我们将从以下几个方面对正态分布的基础理论进行探讨。 ## 正态分布的数学定义 正态分布可以用参数均值(μ)和标准差(σ)完全描述,其概率密度函数(PDF)表达式为: ```math f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e

Pandas数据转换:重塑、融合与数据转换技巧秘籍

![Pandas数据转换:重塑、融合与数据转换技巧秘籍](https://c8j9w8r3.rocketcdn.me/wp-content/uploads/2016/03/pandas_aggregation-1024x409.png) # 1. Pandas数据转换基础 在这一章节中,我们将介绍Pandas库中数据转换的基础知识,为读者搭建理解后续章节内容的基础。首先,我们将快速回顾Pandas库的重要性以及它在数据分析中的核心地位。接下来,我们将探讨数据转换的基本概念,包括数据的筛选、清洗、聚合等操作。然后,逐步深入到不同数据转换场景,对每种操作的实际意义进行详细解读,以及它们如何影响数

p值在机器学习中的角色:理论与实践的结合

![p值在机器学习中的角色:理论与实践的结合](https://itb.biologie.hu-berlin.de/~bharath/post/2019-09-13-should-p-values-after-model-selection-be-multiple-testing-corrected_files/figure-html/corrected pvalues-1.png) # 1. p值在统计假设检验中的作用 ## 1.1 统计假设检验简介 统计假设检验是数据分析中的核心概念之一,旨在通过观察数据来评估关于总体参数的假设是否成立。在假设检验中,p值扮演着决定性的角色。p值是指在原

【线性回归时间序列预测】:掌握步骤与技巧,预测未来不是梦

# 1. 线性回归时间序列预测概述 ## 1.1 预测方法简介 线性回归作为统计学中的一种基础而强大的工具,被广泛应用于时间序列预测。它通过分析变量之间的关系来预测未来的数据点。时间序列预测是指利用历史时间点上的数据来预测未来某个时间点上的数据。 ## 1.2 时间序列预测的重要性 在金融分析、库存管理、经济预测等领域,时间序列预测的准确性对于制定战略和决策具有重要意义。线性回归方法因其简单性和解释性,成为这一领域中一个不可或缺的工具。 ## 1.3 线性回归模型的适用场景 尽管线性回归在处理非线性关系时存在局限,但在许多情况下,线性模型可以提供足够的准确度,并且计算效率高。本章将介绍线

从Python脚本到交互式图表:Matplotlib的应用案例,让数据生动起来

![从Python脚本到交互式图表:Matplotlib的应用案例,让数据生动起来](https://opengraph.githubassets.com/3df780276abd0723b8ce60509bdbf04eeaccffc16c072eb13b88329371362633/matplotlib/matplotlib) # 1. Matplotlib的安装与基础配置 在这一章中,我们将首先讨论如何安装Matplotlib,这是一个广泛使用的Python绘图库,它是数据可视化项目中的一个核心工具。我们将介绍适用于各种操作系统的安装方法,并确保读者可以无痛地开始使用Matplotlib

【统计学中的精确度量】:置信区间与误差范围的关系揭秘

# 1. 统计学基础与精确度量的重要性 ## 统计学概述 统计学是数学的一个分支,它使用数学原理来收集、分析、解释和呈现数据。它为研究者提供了在不确定性中作出决策的工具。统计学的精确度量是数据分析的关键组成部分,它保证了数据的准确性和可靠性。 ## 精确度量的重要性 精确度量指的是使用合适的统计方法来准确反映数据的特征。在处理数据时,精确度量的重要性不容忽视,因为数据处理的最终目的是为了获取有效信息并作出基于数据的决策。在科学研究、市场调研、质量控制等领域,精确度量是确保结果真实性和有效性的基础。 ## 应用场景 精确度量的应用贯穿于IT和相关行业。例如,在软件开发中,用户行为分析依赖于

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )