堆的构建方法:自底向上和自顶向下

发布时间: 2024-05-02 06:23:12 阅读量: 147 订阅数: 29
![堆](https://img-blog.csdnimg.cn/1ad76d162bc54ea6961ce38b76486047.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA56m_54u855qu55qE5bCP57qi5bi9,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. 堆的基本概念和性质** 堆是一种完全二叉树,它满足以下性质: - **形状性质:**堆是一棵完全二叉树,即除了最底层外,其他各层的节点数都达到最大值。 - **序性质:**对于任意一个节点及其左、右子节点,都有`key(node) >= key(left child)`和`key(node) >= key(right child)`。 # 2. 堆的构建方法 堆是一种完全二叉树,满足堆序性质:对于任意节点,其值都大于或等于其子节点的值。堆的构建方法主要有两种:自底向上的堆构建和自顶向下的堆构建。 ### 2.1 自底向上的堆构建 自底向上的堆构建从树的叶节点开始,逐层向上构建堆。 #### 2.1.1 逐个插入法 逐个插入法将元素逐个插入到堆中,并调整堆以满足堆序性质。 ```python def insert(heap, element): heap.append(element) i = len(heap) - 1 while i > 1 and heap[i] > heap[i // 2]: heap[i], heap[i // 2] = heap[i // 2], heap[i] i //= 2 ``` **代码逻辑逐行解读:** 1. 将元素添加到堆的末尾。 2. 设置当前元素索引 `i` 为堆的最后一个元素索引。 3. 循环比较当前元素 `heap[i]` 和其父节点 `heap[i // 2]` 的值。 4. 如果当前元素大于其父节点,则交换这两个元素。 5. 将 `i` 更新为其父节点的索引,继续比较和交换。 6. 循环直到 `i` 达到堆的根节点(`i == 1`)。 **参数说明:** * `heap`: 待构建的堆 * `element`: 要插入的元素 #### 2.1.2 Floyd算法 Floyd算法是一种更有效率的逐个插入算法,它利用了堆的性质,将调整过程优化为 O(log n) 时间复杂度。 ```python def floyd_insert(heap, element): heap.append(element) i = len(heap) - 1 while i > 1: if heap[i] > heap[i // 2]: heap[i], heap[i // 2] = heap[i // 2], heap[i] else: break i //= 2 ``` **代码逻辑逐行解读:** 1. 与逐个插入法类似,将元素添加到堆的末尾。 2. 循环比较当前元素 `heap[i]` 和其父节点 `heap[i // 2]` 的值。 3. 如果当前元素大于其父节点,则交换这两个元素。 4. 不同之处在于,如果当前元素小于或等于其父节点,则直接退出循环,因为此时堆序性质已满足。 5. 继续比较和交换,直到 `i` 达到堆的根节点(`i == 1`)。 **参数说明:** * `heap`: 待构建的堆 * `element`: 要插入的元素 ### 2.2 自顶向下的堆构建 自顶向下的堆构建从树的根节点开始,逐层向下调整堆。 #### 2.2.1 递归法 递归法使用递归函数从根节点开始向下调整堆。 ```python def heapify_recursive(heap, i): left = 2 * i right = 2 * i + 1 largest = i if left < len(heap) and heap[left] > heap[largest]: largest = left if right < len(heap) and heap[right] > heap[largest]: largest = right if largest != i: heap[i], heap[largest] = heap[largest], heap[i] heapify_recursive(heap, largest) ``` **代码逻辑逐行解读:** 1. 获取当前节点 `i` 的左子节点 `left` 和右子节点 `right` 的索引。 2. 初始化最大值索引 `largest` 为当前节点索引 `i`。 3. 比较左子节点 `heap[left]` 和最大值 `heap[largest]` 的值,如果左子节点更大,则更新最大值索引 `largest`。 4. 比较右子节点 `heap[right]` 和最大值 `heap[largest]` 的值,如果右子节点更大,则更新最大值索引 `largest`。 5. 如果最大值索引 `largest` 不等于当前节点索引 `i`,则交换这两个节点的值。 6. 递归调用 `heapify_recursive` 函数对最大值节点的子节点进行调整。 **参数说明:** * `heap`: 待构建的堆 * `i`: 当前
corwn 最低0.47元/天 解锁专栏
买1年送1年
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

专栏简介
本专栏深入探讨了堆的数据结构,从基本概念和操作原理到各种应用场景。它涵盖了堆排序算法、优先队列、Top K 问题、滑动窗口最大值问题、连续中值问题等应用。此外,它还比较了堆与快速排序和二叉搜索树,分析了堆的构建方法和调整方法。专栏还介绍了堆在操作系统、定时任务调度和数据流中位数问题中的应用。它还探讨了堆的扩展应用,如外部排序算法和最小生成树算法。通过深入的分析和示例,本专栏旨在为读者提供对堆及其广泛应用的全面理解。
最低0.47元/天 解锁专栏
买1年送1年
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

【大数据环境】:R语言与dygraphs包在大数据分析中的实战演练

![【大数据环境】:R语言与dygraphs包在大数据分析中的实战演练](https://www.lecepe.fr/upload/fiches-formations/visuel-formation-246.jpg) # 1. R语言在大数据环境中的地位与作用 随着数据量的指数级增长,大数据已经成为企业与研究机构决策制定不可或缺的组成部分。在这个背景下,R语言凭借其在统计分析、数据处理和图形表示方面的独特优势,在大数据领域中扮演了越来越重要的角色。 ## 1.1 R语言的发展背景 R语言最初由罗伯特·金特门(Robert Gentleman)和罗斯·伊哈卡(Ross Ihaka)在19

【R语言网络图数据过滤】:使用networkD3进行精确筛选的秘诀

![networkD3](https://forum-cdn.knime.com/uploads/default/optimized/3X/c/6/c6bc54b6e74a25a1fee7b1ca315ecd07ffb34683_2_1024x534.jpeg) # 1. R语言与网络图分析的交汇 ## R语言与网络图分析的关系 R语言作为数据科学领域的强语言,其强大的数据处理和统计分析能力,使其在研究网络图分析上显得尤为重要。网络图分析作为一种复杂数据关系的可视化表示方式,不仅可以揭示出数据之间的关系,还可以通过交互性提供更直观的分析体验。通过将R语言与网络图分析相结合,数据分析师能够更

R语言在遗传学研究中的应用:基因组数据分析的核心技术

![R语言在遗传学研究中的应用:基因组数据分析的核心技术](https://siepsi.com.co/wp-content/uploads/2022/10/t13-1024x576.jpg) # 1. R语言概述及其在遗传学研究中的重要性 ## 1.1 R语言的起源和特点 R语言是一种专门用于统计分析和图形表示的编程语言。它起源于1993年,由Ross Ihaka和Robert Gentleman在新西兰奥克兰大学创建。R语言是S语言的一个实现,具有强大的计算能力和灵活的图形表现力,是进行数据分析、统计计算和图形表示的理想工具。R语言的开源特性使得它在全球范围内拥有庞大的社区支持,各种先

【R语言与Hadoop】:集成指南,让大数据分析触手可及

![R语言数据包使用详细教程Recharts](https://opengraph.githubassets.com/b57b0d8c912eaf4db4dbb8294269d8381072cc8be5f454ac1506132a5737aa12/recharts/recharts) # 1. R语言与Hadoop集成概述 ## 1.1 R语言与Hadoop集成的背景 在信息技术领域,尤其是在大数据时代,R语言和Hadoop的集成应运而生,为数据分析领域提供了强大的工具。R语言作为一种强大的统计计算和图形处理工具,其在数据分析领域具有广泛的应用。而Hadoop作为一个开源框架,允许在普通的

【R语言高级用户必读】:rbokeh包参数设置与优化指南

![rbokeh包](https://img-blog.csdnimg.cn/img_convert/b23ff6ad642ab1b0746cf191f125f0ef.png) # 1. R语言和rbokeh包概述 ## 1.1 R语言简介 R语言作为一种免费、开源的编程语言和软件环境,以其强大的统计分析和图形表现能力被广泛应用于数据科学领域。它的语法简洁,拥有丰富的第三方包,支持各种复杂的数据操作、统计分析和图形绘制,使得数据可视化更加直观和高效。 ## 1.2 rbokeh包的介绍 rbokeh包是R语言中一个相对较新的可视化工具,它为R用户提供了一个与Python中Bokeh库类似的

【R语言热力图解读实战】:复杂热力图结果的深度解读案例

![R语言数据包使用详细教程d3heatmap](https://static.packt-cdn.com/products/9781782174349/graphics/4830_06_06.jpg) # 1. R语言热力图概述 热力图是数据可视化领域中一种重要的图形化工具,广泛用于展示数据矩阵中的数值变化和模式。在R语言中,热力图以其灵活的定制性、强大的功能和出色的图形表现力,成为数据分析与可视化的重要手段。本章将简要介绍热力图在R语言中的应用背景与基础知识,为读者后续深入学习与实践奠定基础。 热力图不仅可以直观展示数据的热点分布,还可以通过颜色的深浅变化来反映数值的大小或频率的高低,

【R语言图表演示】:visNetwork包,揭示复杂关系网的秘密

![R语言数据包使用详细教程visNetwork](https://forum.posit.co/uploads/default/optimized/3X/e/1/e1dee834ff4775aa079c142e9aeca6db8c6767b3_2_1035x591.png) # 1. R语言与visNetwork包简介 在现代数据分析领域中,R语言凭借其强大的统计分析和数据可视化功能,成为了一款广受欢迎的编程语言。特别是在处理网络数据可视化方面,R语言通过一系列专用的包来实现复杂的网络结构分析和展示。 visNetwork包就是这样一个专注于创建交互式网络图的R包,它通过简洁的函数和丰富

【R语言模式匹配】:利用DataTables包和正则表达式的强大组合

![【R语言模式匹配】:利用DataTables包和正则表达式的强大组合](https://www.oreilly.com/api/v2/epubs/9781782174349/files/graphics/4830_04_02.jpg) # 1. R语言模式匹配入门 ## 1.1 模式匹配的重要性 在数据分析和处理中,模式匹配是提取关键信息、执行文本搜索和数据清洗的重要技术。R语言,作为一种强大的统计分析工具,提供了丰富的模式匹配功能。掌握这些功能能够极大提升数据分析的效率和深度。 ## 1.2 R语言中的基本模式匹配 R语言通过内置函数如`grep()`, `grepl()`, `

【R语言数据包与大数据】:R包处理大规模数据集,专家技术分享

![【R语言数据包与大数据】:R包处理大规模数据集,专家技术分享](https://techwave.net/wp-content/uploads/2019/02/Distributed-computing-1-1024x515.png) # 1. R语言基础与数据包概述 ## 1.1 R语言简介 R语言是一种用于统计分析、图形表示和报告的编程语言和软件环境。自1997年由Ross Ihaka和Robert Gentleman创建以来,它已经发展成为数据分析领域不可或缺的工具,尤其在统计计算和图形表示方面表现出色。 ## 1.2 R语言的特点 R语言具备高度的可扩展性,社区贡献了大量的数据

Highcharter包创新案例分析:R语言中的数据可视化,新视角!

![Highcharter包创新案例分析:R语言中的数据可视化,新视角!](https://colorado.posit.co/rsc/highcharter-a11y-talk/images/4-highcharter-diagram-start-finish-learning-along-the-way-min.png) # 1. Highcharter包在数据可视化中的地位 数据可视化是将复杂的数据转化为可直观理解的图形,使信息更易于用户消化和理解。Highcharter作为R语言的一个包,已经成为数据科学家和分析师展示数据、进行故事叙述的重要工具。借助Highcharter的高级定制