启发式退火求解att48.tsp数据集的最优路径并绘图python代码
时间: 2024-02-05 22:02:30 浏览: 114
好的,以下是启发式退火算法求解att48.tsp数据集的最优路径并绘图的Python代码。
```python
import math
import random
import matplotlib.pyplot as plt
# 读取tsp文件
def read_tsp(filename):
with open(filename, 'r') as f:
lines = f.readlines()[6:]
nodes = []
for line in lines:
node_id, x, y = line.strip().split(' ')
nodes.append((float(x), float(y)))
return nodes
# 计算两点之间的距离
def distance(node1, node2):
return math.sqrt((node1[0]-node2[0])**2 + (node1[1]-node2[1])**2)
# 计算路径长度
def path_length(path, nodes):
length = 0
for i in range(len(path)):
length += distance(nodes[path[i]], nodes[path[(i+1)%len(path)]])
return length
# 生成初始解
def generate_initial_solution(nodes):
path = list(range(len(nodes)))
random.shuffle(path)
return path
# 退火算法
def simulated_annealing(nodes, initial_temperature=1000, cooling_rate=0.99, stopping_temperature=0.1):
# 生成初始解
current_path = generate_initial_solution(nodes)
current_length = path_length(current_path, nodes)
best_path = current_path[:]
best_length = current_length
temperature = initial_temperature
while temperature > stopping_temperature:
# 生成新解
new_path = current_path[:]
index1 = random.randint(0, len(new_path)-1)
index2 = random.randint(0, len(new_path)-1)
new_path[index1], new_path[index2] = new_path[index2], new_path[index1]
new_length = path_length(new_path, nodes)
# 判断是否接受新解
if new_length < current_length or random.random() < math.exp(-(new_length-current_length)/temperature):
current_path = new_path
current_length = new_length
# 更新最优解
if current_length < best_length:
best_path = current_path[:]
best_length = current_length
# 降温
temperature *= cooling_rate
return best_path
# 绘制路径图
def plot_path(nodes, path):
xs = [nodes[i][0] for i in path]
ys = [nodes[i][1] for i in path]
plt.plot(xs, ys, '-o')
plt.show()
if __name__ == '__main__':
nodes = read_tsp('att48.tsp')
path = simulated_annealing(nodes)
print(path)
print(path_length(path, nodes))
plot_path(nodes, path)
```
运行以上代码,即可输出att48.tsp数据集的最优路径并绘制路径图。
阅读全文