启发式退火求解att48.tsp的最优路径
时间: 2024-03-22 20:38:36 浏览: 146
对于TSP问题,启发式退火算法可以用来求解最优路径。这里给出一个使用启发式退火算法求解att48.tsp最优路径的示例代码(使用Python实现):
```python
import math
import random
# 读取att48.tsp文件中的城市坐标
with open("att48.tsp", "r") as f:
lines = f.readlines()[6:-1]
coords = [tuple(map(float, line.strip().split()[1:])) for line in lines]
# 计算两个城市之间的距离
def distance(city1, city2):
x1, y1 = city1
x2, y2 = city2
return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
# 计算当前路径的总距离
def total_distance(path):
return sum(distance(coords[path[i]], coords[path[i+1]])
for i in range(len(path)-1)) + distance(coords[path[-1]], coords[path[0]])
# 启发式退火算法求解TSP问题
def solve_tsp():
# 初始温度
T = 10000
# 温度下降速度
cooling_rate = 0.003
# 当前路径
current_path = list(range(len(coords)))
# 当前路径的总距离
current_distance = total_distance(current_path)
# 最优路径
best_path = current_path
# 最优路径的总距离
best_distance = current_distance
# 迭代直到温度降至极低
while T > 1:
# 随机交换两个城市
i, j = random.sample(range(len(coords)), 2)
new_path = current_path.copy()
new_path[i], new_path[j] = new_path[j], new_path[i]
# 计算新路径的总距离
new_distance = total_distance(new_path)
# 计算能量差
delta_E = new_distance - current_distance
# 如果新路径更优,则接受新路径
if delta_E < 0 or random.random() < math.exp(-delta_E / T):
current_path = new_path
current_distance = new_distance
# 如果当前路径更优,则更新最优路径
if current_distance < best_distance:
best_path = current_path
best_distance = current_distance
# 温度下降
T *= 1 - cooling_rate
return best_path, best_distance
# 输出最优路径和总距离
best_path, best_distance = solve_tsp()
print("Best path:", best_path)
print("Total distance:", best_distance)
```
该代码使用了随机交换两个城市的方式来产生新的路径,然后根据能量差和温度来决定是否接受新路径。通过不断降温,算法能够逐渐收敛到最优路径。
阅读全文