使用优化后的退火算法对att48.tsp求解最优路径并绘图python代码
时间: 2024-02-06 09:04:24 浏览: 120
以下是使用优化后的退火算法对att48.tsp求解最优路径并绘图的Python代码:
```python
import math
import random
import matplotlib.pyplot as plt
# 读取tsp文件
def read_tsp_file(filename):
coordinates = []
with open(filename, 'r') as f:
lines = f.readlines()
for line in lines:
if line.startswith('DIMENSION'):
n = int(line.split()[-1])
elif line.startswith('NODE_COORD_SECTION'):
for i in range(n):
line = lines[i+1].strip().split()
coordinates.append((float(line[1]), float(line[2])))
return coordinates
# 定义距离矩阵
def distance_matrix(city_coordinates):
n = len(city_coordinates)
matrix = [[0] * n for i in range(n)]
for i in range(n):
for j in range(n):
if i != j:
x1, y1 = city_coordinates[i]
x2, y2 = city_coordinates[j]
matrix[i][j] = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
return matrix
# 邻域结构:交换两个城市的位置
def swap_cities(path):
n = len(path)
i, j = random.sample(range(n), 2)
new_path = path[:]
new_path[i], new_path[j] = new_path[j], new_path[i]
return new_path
# 计算路径长度
def path_length(path, distance):
return sum([distance[path[i-1]][path[i]] for i in range(len(path))])
# 优化后的退火算法
def simulated_annealing(distance, max_iterations=50000, start_temperature=10000, cooling_rate=0.99):
n = len(distance)
current_path = random.sample(range(n), n)
current_length = path_length(current_path, distance)
best_path = current_path[:]
best_length = current_length
temperature = start_temperature
for i in range(max_iterations):
new_path = swap_cities(current_path)
new_length = path_length(new_path, distance)
delta = new_length - current_length
if delta < 0 or random.random() < math.exp(-delta/temperature):
current_path = new_path[:]
current_length = new_length
if current_length < best_length:
best_path = current_path[:]
best_length = current_length
temperature *= cooling_rate
return best_path, best_length
# 绘制最优路径
def plot_path(city_coordinates, path):
x = [city_coordinates[path[i]][0] for i in range(len(path))]
y = [city_coordinates[path[i]][1] for i in range(len(path))]
x.append(city_coordinates[path[0]][0])
y.append(city_coordinates[path[0]][1])
plt.plot(x, y, marker='o')
plt.show()
# 读取tsp文件并求解最优路径
filename = 'att48.tsp'
city_coordinates = read_tsp_file(filename)
distance = distance_matrix(city_coordinates)
best_path, best_length = simulated_annealing(distance)
# 输出最优路径和最短距离
print('最优路径:', best_path)
print('最短距离:', best_length)
# 绘制最优路径
plot_path(city_coordinates, best_path)
```
在代码中,我们读取了att48.tsp文件并将其转换为城市坐标,然后使用定义的距离矩阵和优化后的退火算法求解最优路径,最后绘制最优路径的图像。代码运行后,会输出最优路径和最短距离,并绘制最优路径的图像。
阅读全文