并行退火求解att48.tsp数据集的最优路径并绘图python代码
时间: 2024-02-04 21:04:32 浏览: 101
以下是使用并行退火算法求解att48.tsp数据集的最优路径并绘制图形的Python代码:
```python
import numpy as np
import matplotlib.pyplot as plt
from multiprocessing import Pool
# 读取数据集
def read_data(file_name):
with open(file_name, 'r') as f:
lines = f.readlines()[6:-1]
data = []
for line in lines:
x, y = map(float, line.strip().split()[1:])
data.append([x, y])
return np.array(data)
# 计算路径长度
def get_distance(route, dist_mat):
dist = 0
for i in range(len(route) - 1):
dist += dist_mat[route[i], route[i+1]]
dist += dist_mat[route[-1], route[0]]
return dist
# 生成初始解
def generate_init_solution(num_cities):
return np.random.permutation(num_cities)
# 退火过程
def anneal(route, dist_mat, temp, cooling_rate):
dist_cur = get_distance(route, dist_mat)
while temp > 1:
new_route = np.copy(route)
i, j = np.random.randint(0, len(route), size=2)
new_route[i], new_route[j] = new_route[j], new_route[i]
dist_new = get_distance(new_route, dist_mat)
if dist_new < dist_cur:
route = np.copy(new_route)
dist_cur = dist_new
else:
prob = np.exp(-(dist_new - dist_cur) / temp)
if np.random.rand() < prob:
route = np.copy(new_route)
dist_cur = dist_new
temp *= cooling_rate
return route, dist_cur
# 并行退火过程
def parallel_anneal(num_cities, dist_mat, temp, cooling_rate, num_processes):
with Pool(num_processes) as pool:
routes = [generate_init_solution(num_cities) for _ in range(num_processes)]
results = [pool.apply_async(anneal, args=(route, dist_mat, temp, cooling_rate)) for route in routes]
best_route = None
best_dist = float('inf')
for res in results:
route, dist = res.get()
if dist < best_dist:
best_route = route
best_dist = dist
return best_route, best_dist
# 绘制路径图
def plot_route(route, cities):
plt.plot(cities[route, 0], cities[route, 1], 'o-')
plt.plot(cities[route[0], 0], cities[route[0], 1], 'ro')
plt.title('Total distance: {:.2f}'.format(get_distance(route, dist_mat)))
plt.show()
if __name__ == '__main__':
# 读取数据集
cities = read_data('att48.tsp')
# 计算距离矩阵
dist_mat = np.zeros((len(cities), len(cities)))
for i in range(len(cities)):
for j in range(i, len(cities)):
dist = np.linalg.norm(cities[i] - cities[j])
dist_mat[i, j] = dist
dist_mat[j, i] = dist
# 参数设置
temp = 1e4
cooling_rate = 0.999
num_processes = 4
# 并行退火
best_route, best_dist = parallel_anneal(len(cities), dist_mat, temp, cooling_rate, num_processes)
# 绘制路径图
plot_route(best_route, cities)
```
该代码首先读取att48.tsp数据集,并计算距离矩阵。然后定义了生成初始解、计算路径长度、退火过程、并行退火过程和绘制路径图等函数。在并行退火过程中,使用了Python的多进程库Pool,将初始解分为多个子问题,并对每个子问题独立地运行模拟退火算法,最后将子问题的解合并为全局解。最后,调用plot_route函数绘制最优路径图。
阅读全文