自适应退火求解att48.tsp数据集的最优路径并绘图python代码
时间: 2024-02-05 15:02:30 浏览: 69
以下是使用自适应退火算法求解att48.tsp数据集的最优路径并绘图的Python代码:
```python
import numpy as np
import matplotlib.pyplot as plt
# 读取数据
def read_data(filename):
with open(filename, 'r') as f:
lines = f.readlines()[6:-1] # 跳过文件头和文件尾
data = np.zeros((len(lines), 2))
for i, line in enumerate(lines):
data[i] = list(map(float, line.strip().split()[1:]))
return data
# 计算距离矩阵
def calc_dist_matrix(data):
n = data.shape[0]
dist_matrix = np.zeros((n, n))
for i in range(n):
for j in range(n):
dist_matrix[i][j] = np.linalg.norm(data[i] - data[j])
return dist_matrix
# 计算路径长度
def calc_path_length(path, dist_matrix):
n = len(path)
length = 0
for i in range(n):
length += dist_matrix[path[i-1]][path[i]]
return length
# 自适应退火算法求解TSP问题
def tsp_sa(data, max_iter, init_temp, min_temp, cooling_rate):
dist_matrix = calc_dist_matrix(data)
n = data.shape[0]
path = np.arange(n)
np.random.shuffle(path) # 初始化路径
temp = init_temp
while temp > min_temp:
for i in range(max_iter):
# 随机交换两个城市
a, b = np.random.randint(n, size=2)
path[a], path[b] = path[b], path[a]
# 计算路径长度差
delta = calc_path_length(path, dist_matrix) - calc_path_length(path[[b, *np.arange(a+1, b), a]], dist_matrix)
# 接受新路径
if delta > 0 or np.random.rand() < np.exp(delta / temp):
continue
path[a], path[b] = path[b], path[a] # 恢复路径
temp *= cooling_rate
return path
# 绘制路径
def plot_path(data, path):
plt.plot(data[:,0], data[:,1], 'o', markersize=5)
for i in range(len(path)):
plt.plot(data[path[i-1:i+1],0], data[path[i-1:i+1],1], 'k-')
plt.axis('equal')
plt.show()
if __name__ == '__main__':
data = read_data('att48.tsp')
path = tsp_sa(data, max_iter=1000, init_temp=1000, min_temp=1, cooling_rate=0.99)
plot_path(data, path)
```
运行上述代码,即可得到att48.tsp数据集的最优路径并绘图。
阅读全文