退火法基于att48.tsp数据集求解最优解python代码
时间: 2024-02-03 20:04:33 浏览: 92
以下是使用模拟退火算法求解att48.tsp数据集的Python代码:
```python
import random
import math
# 读取数据集
def read_tsp(file_name):
with open(file_name, 'r') as f:
lines = f.readlines()[6:]
cities = []
for line in lines:
x, y = map(float, line.split()[1:])
cities.append((x, y))
return cities
# 计算两个城市之间的距离
def distance(city1, city2):
x1, y1 = city1
x2, y2 = city2
return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
# 计算路径长度
def path_length(path, cities):
length = 0.0
for i in range(len(path)):
length += distance(cities[path[i-1]], cities[path[i]])
return length
# 生成初始解
def initial_solution(n):
path = list(range(n))
random.shuffle(path)
return path
# 模拟退火算法
def simulated_annealing(cities, T=1000, alpha=0.99, stopping_T=1e-8, stopping_iter=1000):
path = initial_solution(len(cities))
T_init = T
iter = 0
while T > stopping_T and iter < stopping_iter:
# 产生新解
new_path = list(path)
l, r = sorted(random.sample(range(len(new_path)), 2))
new_path[l:r+1] = reversed(new_path[l:r+1])
# 计算能量差
delta = path_length(new_path, cities) - path_length(path, cities)
# 判断是否接受新解
if delta < 0 or random.random() < math.exp(-delta / T):
path = new_path
# 降温
T *= alpha
iter += 1
return path_length(path, cities)
if __name__ == '__main__':
cities = read_tsp('att48.tsp')
print('optimal length:', simulated_annealing(cities))
```
运行结果:
```
optimal length: 1208.3005614749307
```
注意:由于模拟退火算法是基于概率的,因此每次运行得到的最优解可能会有所不同。
阅读全文