S=[0 0.4 -2.5;-0.4 0 -1;2.5 0.1 0],且d'(t)=S*d(t),d(0)=[1 1 1]'。请问d是否有界
时间: 2024-06-11 11:05:29 浏览: 80
要判断$d$是否有界,需要求出$d$的范数是否有上界。根据定义,$d$的范数为:
$$\left\|d(t)\right\|=\sqrt{d_1^2(t)+d_2^2(t)+d_3^2(t)}$$
则有:
$$\frac{d}{dt}\left(\left\|d(t)\right\|\right)=\frac{1}{\left\|d(t)\right\|}\frac{d}{dt}\left(d_1^2(t)+d_2^2(t)+d_3^2(t)\right)$$
根据题目中的条件,有:
$$\frac{d}{dt}\left(\left\|d(t)\right\|\right)=\frac{1}{\left\|d(t)\right\|}\left(2d_1(t)\frac{dd_1(t)}{dt}+2d_2(t)\frac{dd_2(t)}{dt}+2d_3(t)\frac{dd_3(t)}{dt}\right)$$
将$d'(t)=Sd(t)$代入上式,可得:
$$\begin{aligned}\frac{d}{dt}\left(\left\|d(t)\right\|\right)&=\frac{1}{\left\|d(t)\right\|}\left(2d_1(t)(0.4d_2(t)-2.5d_3(t))+2d_2(t)(-0.4d_1(t)-d_3(t))+2d_3(t)(2.5d_1(t)+0.1d_3(t))\right)\\&=\frac{1}{\left\|d(t)\right\|}\left(-0.8d_1(t)d_2(t)+2.5d_1(t)d_3(t)-0.4d_2^2(t)-d_3^2(t)+0.1d_3^2(t)\right)\end{aligned}$$
根据上式,要判断$d$是否有界,只需判断$\frac{d}{dt}\left(\left\|d(t)\right\|\right)$是否有上下界。
对于$\frac{d}{dt}\left(\left\|d(t)\right\|\right)$的每一项,可以发现:
$$\begin{aligned}-0.8d_1(t)d_2(t)+2.5d_1(t)d_3(t)&\leqslant\sqrt{(-0.8d_1(t)d_2(t))^2+(2.5d_1(t)d_3(t))^2}\\&\leqslant\sqrt{(0.8d_1^2(t)+2.5d_1^2(t))(d_2^2(t)+d_3^2(t))}\\&=\sqrt{(3.29)(d_2^2(t)+d_3^2(t))}\end{aligned}$$
$$-0.4d_2^2(t)-d_3^2(t)+0.1d_3^2(t)\leqslant-0.4d_2^2(t)+0.1d_3^2(t)\leqslant-0.3d_3^2(t)$$
因此,对于$\frac{d}{dt}\left(\left\|d(t)\right\|\right)$,有:
$$\frac{d}{dt}\left(\left\|d(t)\right\|\right)\leqslant\frac{1}{\left\|d(t)\right\|}\sqrt{(3.29)(d_2^2(t)+d_3^2(t))}-0.3d_3^2(t)$$
可以看出,当$d_2(t)$和$d_3(t)$的值趋近于无穷大时,$\frac{d}{dt}\left(\left\|d(t)\right\|\right)$也会趋近于无穷大。因此,$d$无界。
阅读全文