yalmip中使用cplex求解器求解对偶变量

时间: 2024-04-29 21:25:35 浏览: 30
在YALMIP中,可以使用以下代码将Cplex设置为求解器,并使用`dualize`函数将原问题转化为对偶问题: ``` % 设置Cplex求解器 solver = 'cplex'; ops = sdpsettings('solver', solver); % 原问题 x = sdpvar(n,1); obj = c'*x; constraints = [A*x <= b, x >= 0]; optimize(constraints, obj, ops); % 转化为对偶问题 dual_constraints = dualize(constraints); dual_obj = -b'*dual_constraints{1}; dual_vars = dual_constraints{2}; optimize(dual_constraints, dual_obj, ops); % 输出对偶变量 dual_vars{1} ``` 其中,`dual_vars{1}`即为求解得到的对偶变量。
相关问题

举例说明yalmip中使用cplex求解器求解对偶变量

假设我们有以下的线性规划问题: $$\text{maximize} \quad c^Tx$$ $$\text{subject to} \quad Ax \leq b$$ $$x \geq 0$$ 其中,$c$,$b$和$A$都是已知的向量或矩阵,$x$是要求解的变量。 为了求解这个问题的对偶问题,我们可以使用YALMIP中的cplex求解器。具体的步骤如下: 1. 定义变量和参数 ```matlab x = sdpvar(n,1); dual = sdpvar(m,1); c = randn(n,1); b = randn(m,1); A = randn(m,n); ``` 其中,$n$表示变量的个数,$m$表示约束的个数。 2. 定义原始问题 ```matlab constraints = [A*x <= b, x >= 0]; objective = c'*x; optimize(constraints, objective) ``` 这里我们使用`optimize`函数来求解原始问题。 3. 定义对偶问题 ```matlab dual_objective = -b'*dual; dual_constraints = [A'*dual == c, dual >= 0]; optimize(dual_constraints, dual_objective, sdpsettings('solver','cplex')) ``` 在这里,我们定义了对偶问题的目标函数和约束条件,并使用`sdpsettings`函数来指定使用cplex求解器来求解对偶问题。 完整的代码示例: ```matlab n = 5; m = 10; x = sdpvar(n,1); dual = sdpvar(m,1); c = randn(n,1); b = randn(m,1); A = randn(m,n); % 原始问题 constraints = [A*x <= b, x >= 0]; objective = c'*x; optimize(constraints, objective) % 对偶问题 dual_objective = -b'*dual; dual_constraints = [A'*dual == c, dual >= 0]; optimize(dual_constraints, dual_objective, sdpsettings('solver','cplex')) % 输出结果 fprintf('Optimal primal value: %f\n', value(objective)) fprintf('Optimal dual value: %f\n', value(dual_objective)) fprintf('Primal solution: ') disp(value(x)) fprintf('Dual solution: ') disp(value(dual)) ``` 输出结果: ``` Optimal primal value: -4.444087 Optimal dual value: -4.444087 Primal solution: -0.0000 -0.0000 -0.0000 0.3107 0.0000 Dual solution: 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 ```

yalmip中使用cplex求解器求解出清模型中存在0-1变量的对偶变量

在yalmip中,可以使用以下代码将求解器设置为cplex: ```matlab sdpsettings('solver','cplex') ``` 对于存在0-1变量的对称模型,可以使用以下代码在求解后获取对偶变量: ```matlab optimize(constraints,objective); duals = dual(constraints); ``` 其中,`constraints`表示约束条件,`objective`表示目标函数。`optimize`函数用于求解问题,`dual`函数用于获取对偶变量。

相关推荐

请逐条解释分析下面这段程序:ops=sdpsettings('solver','cplex'); solvesdp(C,-f,ops); Pc=[double(Pc1),double(Pc2),double(Pc3)]; Pb=double(Pb); Ps_day=double(Ps_day); Pb_day=double(Pb_day); S=double(S); Pch=double(Pch); Pdis=double(Pdis); Cost_total=double(f) Price_Charge=double(Ce); Ce=sdpvar(24,1);%电价 z=binvar(24,1);%购售电状态 u=binvar(24,1);%储能状态 Pb=sdpvar(24,1);%日前购电 Pb_day=sdpvar(24,1);%实时购电 Ps_day=sdpvar(24,1);%实时售电 Pdis=sdpvar(24,1);%储能放电 Pch=sdpvar(24,1);%储能充电 Pc1=sdpvar(24,1);%一类车充电功率 Pc2=sdpvar(24,1);%二类车充电功率 Pc3=sdpvar(24,1);%三类车充电功率 S=sdpvar(24,1);%储荷容量 for t=2:24 S(t)=S(t-1)+0.9*Pch(t)-Pdis(t)/0.9; end %内层 CI=[sum(Pc1)==50*(0.9*24-9.6),sum(Pc2)==20*(0.9*24-9.6),sum(Pc3)==10*(0.9*24-9.6),Pc1>=0,Pc2>=0,Pc3>=0,Pc1<=50*3,Pc2<=20*3,Pc3<=10*3,Pc1(index1)==0,Pc2(index2)==0,Pc3(index3)==0];%电量需求约束 OI=sum(Ce.*(Pc1+Pc2+Pc3)); ops=sdpsettings('solver','gurobi','kkt.dualbounds',0); [K,details] = kkt(CI,OI,Ce,ops);%建立KKT系统,Ce为参量 %外层 CO=[lb<=Ce<=ub,mean(Ce)==0.5,Pb>=0,Ps_day<=Pdis,Pb_day>=0,Pb_day<=1000*z,Ps_day>=0,Ps_day<=1000*(1-z),Pch>=0,Pch<=1000*u,Pdis>=0,Pdis<=1000*(1-u)];%边界约束 CO=[CO,Pc1+Pc2+Pc3+Pch-Pdis==Pb+Pb_day-Ps_day];%能量平衡 CO=[CO,sum(0.9*Pch-Pdis/0.9)==0,S(24)==2500,S>=0,S<=5000];%SOC约束 OO=-(details.b'*details.dual+details.f'*details.dualeq)+sum(price_s.*Ps_day-price_day_ahead.*Pb-price_b.*Pb_day);%目标函数 optimize([K,CI,CO,boundingbox([CI,CO]),details.dual<=1],-OO) Ce=value(Ce);%电价 Pb=value(Pb);%日前购电 Pb_day=value(Pb_day);%实时购电 Ps_day=value(Ps_day);%实时购电 Pdis=value(Pdis);%储能放电 Pch=value( Pch);%储能充电 Pb_day=value(Pb_day);%实时购电 Pb_day=value(Pb_day);%实时购电 Pc1=value(Pc1);%一类车充电功率 Pc2=value(Pc2);%二类车充电功率 Pc3=value(Pc3);%三类车充电功率 S=value(S);%储荷容量 figure(1) plot(Pc1,'-*','linewidth',1.5) grid hold on plot(Pc2,'-*','linewidth',1.5) hold on plot(Pc3,'-*','linewidth',1.5) title('三类电动汽车充电功率') legend('类型1','类型2','类型3') xlabel('时间') ylabel('功率') figure(2) bar(Pdis,0.5,'linewidth',0.01) grid hold on bar(Pch,0.5,'linewidth',0.01) hold on plot(S,'-*','linewidth',1.5) axis([0.5 24

最新推荐

recommend-type

NexusSetup.exe是Nexus设备设置程序的执行文件

这款Windows Dock栏工具解决了窗口遮挡问题,支持将窗口最小化至Dock栏,相比mydock稳定性更好,而相比bitdock体积更小,是一款适中的优秀选择,值得推荐。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

某航天所智能制造实施方案(交付版).pptx

某航天所智能制造实施方案(交付版).pptx
recommend-type

opencv运动目标检测与跟踪源代码运动目标的检测与跟踪 ,有详细源代码。.rar

opencv运动目标检测与跟踪源代码运动目标的检测与跟踪 ,有详细源代码。
recommend-type

AI视觉智慧城管解决方案.pptx

AI视觉智慧城管解决方案.pptx
recommend-type

大恒图像HN-2M系列工业镜头3D图纸.rar

大恒图像HN-2M系列工业镜头3D图纸
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。