% 选择下一代种群 newpop = []; frontIndex = 1; while size(newpop, 1) + size(fronts{frontIndex}, 1) <= popsize % 对当前层个体按照拥挤度排序 [~, sortIndex] = sort(crowdingDist(fronts{frontIndex}), 'descend'); sortedFront = fronts{frontIndex}(sortIndex, :); newpop = [newpop; pop(sortedFront, :)]; frontIndex = frontIndex + 1; end % 处理最后一层个体 if size(newpop, 1) < popsize [~, sortIndex] = sort(crowdingDist(fronts{frontIndex}), 'descend'); sortedFront = fronts{frontIndex}(sortIndex, :); % 选择拥挤度大的个体 n = popsize - size(newpop, 1); newpop = [newpop; pop(sortedFront(1:n), :)]; end % 更新种群 pop = newpop; end这段代码如何定义为一个函数
时间: 2023-12-11 10:04:13 浏览: 107
immunity.rar_calobjvalue matlab_newpop_人工免疫故障_免疫 算法_免疫迭代
5星 · 资源好评率100%
可以将这段代码定义为一个函数,函数的输入参数为pop和popsize,输出参数为更新后的pop。
函数定义如下:
```matlab
function pop = NSGAII_selection(pop, popsize)
fronts = NSGAII_fast_non_dominated_sort(pop);
crowdingDist = NSGAII_crowding_distance(pop, fronts);
newpop = [];
frontIndex = 1;
while size(newpop, 1) + size(fronts{frontIndex}, 1) <= popsize
[~, sortIndex] = sort(crowdingDist(fronts{frontIndex}), 'descend');
sortedFront = fronts{frontIndex}(sortIndex, :);
newpop = [newpop; pop(sortedFront, :)];
frontIndex = frontIndex + 1;
end
if size(newpop, 1) < popsize
[~, sortIndex] = sort(crowdingDist(fronts{frontIndex}), 'descend');
sortedFront = fronts{frontIndex}(sortIndex, :);
n = popsize - size(newpop, 1);
newpop = [newpop; pop(sortedFront(1:n), :)];
end
pop = newpop;
end
```
在函数中,调用了两个子函数:`NSGAII_fast_non_dominated_sort`和`NSGAII_crowding_distance`,这两个函数需要根据具体问题进行实现。
阅读全文