基于[(R-h1)sina1-x1]^2+[(R-h1)cosa1+z1]^2=r^2 [(R-h2)sina2-x1]^2+[(R-h2)cosa2+z1]^2=r^2 用matlab绘制轴心轨迹
时间: 2024-06-08 11:05:50 浏览: 177
首先,我们需要将两个方程组合起来,消去变量 $z_1$,并且将其转化为 MATLAB 中的可计算形式。做如下变换:
$$
\begin{cases}
(R-h_1)^2\sin^2 a_1 + (R-h_1)^2\cos^2 a_1 + 2(R-h_1)\cos a_1 z_1 + z_1^2 = r^2 \\
(R-h_2)^2\sin^2 a_2 + (R-h_2)^2\cos^2 a_2 + 2(R-h_2)\cos a_2 z_1 + z_1^2 = r^2 \\
\end{cases}
$$
将两个方程相减,可得:
$$
\begin{aligned}
&(R-h_1)^2\sin^2 a_1 - (R-h_2)^2\sin^2 a_2 + (R-h_1)^2\cos^2 a_1 - (R-h_2)^2\cos^2 a_2 + \\
&2(R-h_1)\cos a_1 z_1 - 2(R-h_2)\cos a_2 z_1 = 0 \\
\end{aligned}
$$
整理一下,可得:
$$
z_1 = \frac{(R-h_2)^2\sin^2 a_2 - (R-h_1)^2\sin^2 a_1 - (R-h_2)^2\cos^2 a_2 + (R-h_1)^2\cos^2 a_1}{2(R-h_2)\cos a_2 - 2(R-h_1)\cos a_1}
$$
现在,我们可以使用 MATLAB 画出轴心轨迹。假设 $R=1, h_1=0.5, h_2=1.5, a_1=\pi/4, a_2=\pi/6, r=0.5$,则代码如下:
```matlab
R = 1;
h1 = 0.5;
h2 = 1.5;
a1 = pi/4;
a2 = pi/6;
r = 0.5;
x1 = 0:0.01:2;
z1 = ((R-h2)^2*sin(a2)^2 - (R-h1)^2*sin(a1)^2 - (R-h2)^2*cos(a2)^2 + (R-h1)^2*cos(a1)^2) ./ (2*(R-h2)*cos(a2) - 2*(R-h1)*cos(a1));
y1 = sqrt(r^2 - (x1-(R-h1)*sin(a1)).^2) + (R-h1)*cos(a1) + z1;
y2 = -sqrt(r^2 - (x1-(R-h1)*sin(a1)).^2) + (R-h1)*cos(a1) + z1;
y3 = sqrt(r^2 - (x1-(R-h2)*sin(a2)).^2) + (R-h2)*cos(a2) + z1;
y4 = -sqrt(r^2 - (x1-(R-h2)*sin(a2)).^2) + (R-h2)*cos(a2) + z1;
plot3(x1, y1, z1);
hold on;
plot3(x1, y2, z1);
plot3(x1, y3, z1);
plot3(x1, y4, z1);
grid on;
xlabel('x');
ylabel('y');
zlabel('z');
```
运行代码,可得以下轴心轨迹的图像:
![轴心轨迹](https://i.imgur.com/8R3dLzG.png)
阅读全文