由权值分别为3,6,8,2,5的叶子结点生成一棵哈夫曼树,它的带权路径长度为()。
时间: 2024-03-26 13:35:39 浏览: 124
哈夫曼树是一种带权路径长度最短的树,可以通过贪心算法构造。具体步骤如下:
1. 将所有节点按权值从小到大排序。
2. 取出权值最小的两个节点,构建一棵新的二叉树,其中较小的节点为左子树,较大的节点为右子树,并将新树的根节点的权值设为左右子树权值之和。
3. 将新树插入到排序后的节点序列中,并更新权值排序序列。
4. 重复步骤 2 和 3,直到序列中只剩下一棵哈夫曼树。
根据上述步骤,可以得到如下的哈夫曼树:
```
24
/ \
10 14
/ \
4 6
/ \
3 1
```
其中,叶子节点的权值分别为 3、6、8、2、5,带权路径长度为每个叶子节点的权值乘以到根节点的路径长度之和,即:
```
3*3 + 6*2 + 8*2 + 2*3 + 5*3 = 3 + 12 + 16 + 6 + 15 = 52
```
因此,该哈夫曼树的带权路径长度为 52。
相关问题
由权值分别为3,8,6,2,5的叶子结点生成一棵哈夫曼树,它的带权路径长度为
首先,我们需要将叶子节点按照权值从小到大排序,得到:2,3,5,6,8。
然后,我们需要不断地合并权值最小的两个节点,直到只剩下一个根节点。每次合并后,新生成的节点的权值为合并前两个节点的权值之和。因此,我们可以得到以下合并过程:
1. 合并2和3,得到一个新节点5,权值为2+3=5。
2. 合并5和5,得到一个新节点10,权值为5+5=10。
3. 合并6和8,得到一个新节点14,权值为6+8=14。
4. 合并10和14,得到一个新节点24,权值为10+14=24。
最终,得到的哈夫曼树如下所示:
```
24
/ \
10 14
/ \
5 5
/ \
2 3
```
根据哈夫曼树的定义,带权路径长度是指每个叶子节点的权值乘以其到根节点的路径长度之和。因此,我们可以计算出每个叶子节点的带权路径长度:
- 权值为2的叶子节点,路径长度为3,带权路径长度为2*3=6;
- 权值为3的叶子节点,路径长度为2,带权路径长度为3*2=6;
- 权值为5的叶子节点,路径长度为2,带权路径长度为5*2=10;
- 权值为6的叶子节点,路径长度为2,带权路径长度为6*2=12;
- 权值为8的叶子节点,路径长度为1,带权路径长度为8*1=8。
最终,将每个叶子节点的带权路径长度相加,得到的结果为6+6+10+12+8=42。因此,这棵哈夫曼树的带权路径长度为42。
由权值分别为3,8,6,2,5的叶子结点生成一棵哈夫曼树,它的带权路径长度头
生成哈夫曼树的步骤如下:
1. 将权值从小到大排列,得到 2,3,5,6,8。
2. 取出权值最小的两个节点,将它们合并成一个新节点,新节点的权值为两个节点的权值之和,并将新节点放回权值序列中。
3. 重复步骤 2,直到所有节点都被合并为一个根节点,得到哈夫曼树。
按照上述步骤,我们可以得到以下哈夫曼树:
```
24
/ \
/ \
11 13
/ \
/ \
5 6
/ \
2 3
```
根据哈夫曼树的定义,带权路径长度(WPL)是每个叶子节点的权值乘以到根节点的路径长度之和。因此,这棵哈夫曼树的带权路径长度为:
```
WPL = 2*3 + 3*3 + 5*2 + 6*2 + 8*2 = 46
```
因此,它的带权路径长度为46。
阅读全文