msg->data.c_str()
时间: 2024-09-24 18:05:34 浏览: 83
`msg->data.c_str()` 是 C++ 中从 `std::string` 或者实现了 `std::string_view` 类型的 `data` 成员获取字符数组的一个常见操作。这里假设 `msg` 指向一个包含字符串数据的对象,`data` 是该对象中的一个成员,类型为 `std::string` 或者提供了 `c_str()` 函数的其他字符串视图。
`c_str()` 函数的作用是返回一个指向字符串常量的 const char* 指针。这个指针指向的是字符串内部存储的字节序列,你可以用它来进行标准的 C 风格字符串处理,如传递给需要 C 风格字符串接口的函数。
例如:
```cpp
if (msg->data.size() > 0) {
std::cout << "Message data as a C-style string: " << msg->data.c_str() << std::endl;
}
```
在这个例子中,如果 `msg->data` 不为空,就会打印出 `msg->data` 的内容,就像使用 `const char*` 字符串一样。
相关问题
void chao_callback(std_msgs::String msg) { printf(msg.data.c_str()); printf("/n"); }
这段代码是一个ROS的回调函数,它订阅了一个名为`chao`的ROS主题,该主题的消息类型为`std_msgs::String`。当有新的消息发布到这个主题时,ROS将调用`chao_callback`函数,并将消息作为参数传递给它。
在这个函数中,`msg.data`是一个`std::string`类型的对象,它包含了接收到的消息内容。`c_str()`函数将`std::string`类型的对象转换为C风格的字符串,以便可以使用`printf()`函数打印出来。`/n`是换行符的意思,用于在打印完消息后换行显示。
需要注意的是,使用`printf()`函数时应该避免使用未经验证的字符串作为格式化字符串,这可能会导致安全漏洞。如果需要格式化输出,可以使用安全的C++流输出或者ROS提供的`ROS_INFO()`等日志输出函数。
代码解释:void CopleyAmplifier::SetNewPVTMotionStartTime(boost::posix_time::ptime time,CouchTrjType pvt_point) { //Record the time stamp and data. m_bool_pvt_started = true; m_start_motion_time_us = PosixTime2Integer<unsigned long long>(time); m_last_pvt_data.p = m_start_pos; //Send the last dummy data calculated by the motion start time. ptime current_time = microsec_clock::universal_time(); ptime couch_time = Integer2PosixTime<unsigned long long>(pvt_point.t, current_time); ptime couch_to_L1_time = Integer2PosixTime<unsigned long long>(pvt_point.timeReachToBuffer, current_time); unsigned char next_point_time = round((pvt_point.t-m_start_motion_time_us)/1000.0)-m_total_motion_time_ms; if(next_point_time<4) { GcLogInfo(m_log_id, __FUNCTION__, "<CopleyStartPVT>Motion start time:%s. First couch time:%s.First couch to L1 time:%s.", boost::posix_time::to_simple_string(time).c_str(), boost::posix_time::to_simple_string(couch_time).c_str(), boost::posix_time::to_simple_string(couch_to_L1_time).c_str()); GcLogInfo(m_log_id, __FUNCTION__, "next_point_time: %d.",next_point_time); BOOST_THROW_EXCEPTION(AxisException() <<Axis_Error_Msg("Start PVT time failed! No enough time for First PVT data!")); } AmpPVTData dummy_data = {next_point_time,0,0}; //Send the left dummy data. dummy_data.time = next_point_time; Gantry::Array seg_cmd = ComposePVTRawData(dummy_data,m_next_pvt_index,1); GcLogDebugExpect(m_need_trace, m_log_id, __FUNCTION__, "<CopleyStartPVT>The %dth PVT dummy data.", m_next_pvt_index); WriteSDO(Gantry::ODAddress(COPLEY_PVT_DATA, 0), (unsigned long long)seg_cmd.GetValue<unsigned long long>()); GcLogInfo(m_log_id, __FUNCTION__, "<CopleyStartPVT>Motion start time:%s. First couch time:%s.First couch to L1 time:%s.", boost::posix_time::to_simple_string(time).c_str(), boost::posix_time::to_simple_string(couch_time).c_str(), boost::posix_time::to_simple_string(couch_to_L1_time).c_str()); m_total_motion_time_ms += dummy_data.time; m_lasttrj_segments.push_back(seg_cmd.GetValue<unsigned long long>()); ++m_next_pvt_index; GcLogInfo(m_log_id, __FUNCTION__, "<CopleyStartPVT>Motion Started. Start position %f mm.", pvt_point.p); }
这段代码是一个函数 `CopleyAmplifier::SetNewPVTMotionStartTime` 的实现。下面是对每一行代码的解释:
1. `m_bool_pvt_started = true;`:将成员变量 `m_bool_pvt_started` 的值设置为 `true`,表示 PVT(位置-速度-时间)运动已经开始。
2. `m_start_motion_time_us = PosixTime2Integer<unsigned long long>(time);`:将传入的时间戳 `time` 转换为一个无符号长长整型,并将其赋值给成员变量 `m_start_motion_time_us`,表示运动的起始时间。
3. `m_last_pvt_data.p = m_start_pos;`:将成员变量 `m_last_pvt_data` 的位置成员 `p` 设置为起始位置 `m_start_pos`。
4. 获取当前时间和计算时间差:通过 `microsec_clock::universal_time()` 获取当前时间,然后使用 `Integer2PosixTime<unsigned long long>` 将 `pvt_point.t` 和 `pvt_point.timeReachToBuffer` 转换为时间戳,并与当前时间进行计算。
5. 计算下一个点的时间:通过 `(pvt_point.t - m_start_motion_time_us) / 1000.0` 计算出下一个点与运动起始时间的时间差,并将结果四舍五入为整数,并减去 `m_total_motion_time_ms` 得到 `next_point_time`。
6. 检查下一个点的时间是否足够:如果 `next_point_time` 小于 4,表示没有足够的时间来发送第一个 PVT 数据,将抛出 `AxisException` 异常。
7. 创建一个 `AmpPVTData` 结构体 `dummy_data`,并初始化其中的字段。
8. 调用 `ComposePVTRawData` 函数将 `dummy_data`、`m_next_pvt_index` 和 1 组合成一个 `Gantry::Array` 类型的数据 `seg_cmd`。
9. 使用 `WriteSDO` 函数将 `seg_cmd.GetValue<unsigned long long>()` 写入到 `COPLEY_PVT_DATA` 的地址中。
10. 更新一些日志信息和计算总运动时间。
11. 将 `seg_cmd.GetValue<unsigned long long>()` 添加到 `m_lasttrj_segments` 容器中,并递增 `m_next_pvt_index`。
12. 更新一些日志信息,表示运动已经开始,并输出起始位置。
总体来说,这段代码的作用是设置 PVT 运动的起始时间,并发送第一个 PVT 数据。具体的逻辑和功能可能需要结合上下文和相关的函数来理解。
阅读全文
相关推荐
![doc](https://img-home.csdnimg.cn/images/20241231044833.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![doc](https://img-home.csdnimg.cn/images/20241231044833.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)