whitenedAudio.transpose().mmul(gXPrime).mean(0)中mean方法没有参数
时间: 2024-04-24 22:25:12 浏览: 127
juzhenzhuanzhi.rar_transpose.rar_矩阵转置
非常抱歉,我之前给出的代码中的 `mean` 方法确实需要一个整数参数来指定计算的维度。感谢你的指正。
在代码中,`mean(0)` 表示计算矩阵的每一列的平均值,如果你想计算每一行的平均值,可以使用 `mean(1)`。
以下是更新后的代码:
```java
import org.jblas.FloatMatrix;
import org.jblas.MatrixFunctions;
import javax.sound.sampled.*;
import java.io.File;
import java.io.IOException;
public class SourceSeparationDemo {
public static void main(String[] args) throws UnsupportedAudioFileException, IOException, LineUnavailableException {
// 定义输入音频文件路径
String audioFilePath = "input_audio.wav";
// 加载音频文件
AudioInputStream inputStream = AudioSystem.getAudioInputStream(new File(audioFilePath));
// 获取音频数据
byte[] audioData = new byte[(int) (inputStream.getFrameLength() * inputStream.getFormat().getFrameSize())];
inputStream.read(audioData);
// 将音频数据转换为Float数组
float[] audioFloatArray = new float[audioData.length / 2];
for (int i = 0, j = 0; i < audioData.length; i += 2, j++) {
short sample = (short) ((audioData[i] & 0xFF) | (audioData[i + 1] << 8));
audioFloatArray[j] = sample / 32768.0f;
}
// 分离声源
float[][] separatedAudio = separateAudioSources(audioFloatArray);
// 将分离后的音频写入文件
for (int i = 0; i < separatedAudio.length; i++) {
String outputFilePath = "output_audio" + (i + 1) + ".wav";
writeAudioToFile(separatedAudio[i], outputFilePath);
System.out.println("分离后的音频" + (i + 1) + ": " + outputFilePath);
}
}
private static float[][] separateAudioSources(float[] audioData) {
// 将音频数据转换为矩阵
FloatMatrix audioMatrix = new FloatMatrix(audioData.length, 1, audioData);
// 创建混合矩阵(示例数据)
FloatMatrix mixingMatrix = FloatMatrix.rand(audioData.length, 2);
// 混合音频信号
FloatMatrix mixedAudio = audioMatrix.mmul(mixingMatrix);
// 使用FastICA算法分离声源
FastICA ica = new FastICA();
FloatMatrix[] separatedSources = ica.run(mixedAudio);
// 将分离后的声源转换为二维数组
float[][] separatedAudio = new float[separatedSources.length][audioData.length];
for (int i = 0; i < separatedSources.length; i++) {
for (int j = 0; j < audioData.length; j++) {
separatedAudio[i][j] = separatedSources[i].get(j);
}
}
return separatedAudio;
}
private static void writeAudioToFile(float[] audioData, String outputFilePath) throws LineUnavailableException, IOException {
// 创建音频格式
AudioFormat audioFormat = new AudioFormat(44100, 16, 1, true, false);
// 创建音频输出流
AudioSystem.write(new AudioInputStream(new AudioFloatInputStream(audioData), audioFormat, audioData.length), AudioFileFormat.Type.WAVE, new File(outputFilePath));
}
private static class FastICA {
private static final int MAX_ITERATIONS = 1000;
private static final float TOLERANCE = 1e-6f;
public FloatMatrix[] run(FloatMatrix mixedAudio) {
int numSources = mixedAudio.columns;
int numSamples = mixedAudio.rows;
// 中心化信号
FloatMatrix centeredAudio = mixedAudio.subRowVector(mixedAudio.columnMeans());
// 白化信号
FloatMatrix whitenedAudio = whitening(centeredAudio);
// 初始化分离矩阵
FloatMatrix separationMatrix = FloatMatrix.eye(numSources);
for (int i = 0; i < numSources; i++) {
FloatMatrix source = separationMatrix.getColumn(i);
FloatMatrix previousSource;
// 进行FastICA迭代
for (int iteration = 0; iteration < MAX_ITERATIONS; iteration++) {
previousSource = source.dup();
// 非线性函数(这里使用了tanh函数)
FloatMatrix gX = MatrixFunctions.tanh(source.mmul(whitenedAudio.transpose()));
// 求导数
FloatMatrix gXPrime = MatrixFunctions.pow(gX, -2).negi().addi(1);
// 更新分离矩阵
source = whitenedAudio.transpose().mmul(gXPrime).rowMeans().subi(source.mmul(source.transpose()).mmul(whitenedAudio.transpose().mmul(gXPrime).rowMeans()));
// 对分离矩阵进行正交化
source = orthogonize(separationMatrix, source, i);
// 归一化
source.divi(source.norm2());
// 检查收敛条件
float change = source.sub(previousSource).norm2();
if (change < TOLERANCE) {
break;
}
}
separationMatrix.putColumn(i, source);
}
// 分离信号
return separationMatrix.mmul(centeredAudio.transpose()).toArray();
}
private FloatMatrix whitening(FloatMatrix centeredAudio) {
FloatMatrix covarianceMatrix = centeredAudio.transpose().mmul(centeredAudio).div(centeredAudio.rows);
FloatMatrix eigenvalues = new FloatMatrix(covarianceMatrix.eig().getEigenvalues().real());
FloatMatrix eigenvalueMatrix = FloatMatrix.diag(MatrixFunctions.pow(eigenvalues, -0.5f));
FloatMatrix whiteningMatrix = eigenvalueMatrix.mmul(centeredAudio.transpose());
return whiteningMatrix.transpose();
}
private FloatMatrix orthogonize(FloatMatrix separationMatrix, FloatMatrix source, int currentSourceIndex) {
for (int i = 0; i < currentSourceIndex; i++) {
FloatMatrix previousSource = separationMatrix.getColumn(i);
source.subi(previousSource.mmul(source).mul(previousSource));
}
return source;
}
}
}
```
更新后的代码中,我们将 `whitenedAudio.transpose().mmul(gXPrime).mean(0)` 修改为 `whitenedAudio.transpose().mmul(gXPrime).rowMeans()`,以计算每一行的均值。
希望这个更新后的示例能帮助你进行声源分离并将分离后的音频写入文件。如果你有任何其他问题,请随时提问。
阅读全文