np.linalg.lstsq
时间: 2023-10-31 08:38:22 浏览: 159
`np.linalg.lstsq` is a NumPy function that solves the least-squares problem, which is finding the best-fitting linear equation for a set of data points. It takes as input a matrix `A` representing the data points, a vector `b` representing the target values, and an optional parameter `rcond` that specifies the cutoff for small singular values. The function returns a tuple `(x, residuals, rank, s)` where `x` is the solution to the least-squares problem, `residuals` is the sum of squared residuals, `rank` is the rank of matrix `A`, and `s` is an array containing the singular values of `A`.
The solution `x` represents the coefficients of the linear equation that best fits the data. If `A` has more columns than rows, the solution is an over-determined system and the best-fitting solution is obtained by minimizing the sum of squared residuals. If `A` has more rows than columns, the solution is an under-determined system and the least-norm solution is obtained by minimizing the norm of `x`.
阅读全文