已知一棵完全二叉树的第六层有8个叶结点则该完全二叉树的结点个数最多是多少 最少是多少
时间: 2023-06-24 20:04:15 浏览: 376
完全二叉树的第 $k$ 层有 $2^{k-1}$ 个节点,叶子节点只存在于最后几层,因此我们可以得出以下结论:
* 第 $h$ 层到第 $n$ 层共有 $2^{n-h+1}-1$ 个节点。
* 第 $n$ 层最多有 $2^{n-1}$ 个节点。
因为这是一棵完全二叉树,所以第 $6$ 层共有 $2^{6-1}=32$ 个节点,其中有 $8$ 个叶子节点。
最少的情况发生在第 $6$ 层恰好只有 $8$ 个叶子节点,而其他层都是满二叉树的情况,这样总节点数为 $1+2+4+8+16+32=63$。
最多的情况发生在第 $6$ 层有 $8$ 个叶子节点,并且其他层都是满二叉树的情况,这样总节点数为 $1+2+4+8+16+32+64=127$。
因此,该完全二叉树的结点个数最多是 $127$,最少是 $63$。
相关问题
c语言求 已知一棵完全二叉树的第6层(设根结点为第1层)有8个叶子结点,则该完全二叉树的结点个数最多是多少?最少是多少?
根据完全二叉树的性质,第6层的结点个数是2^5=32,其中叶子结点的个数为8。又因为完全二叉树的叶子结点只会在最后两层出现,所以第5层的结点个数为8*2=16,第4层的结点个数为16*2=32,以此类推,可以得到该完全二叉树的最多结点个数为 1+2+4+8+16+32+64=127,最少结点个数为 64。
已知一棵完全二叉树的第6层(设根为第1层)有8个叶结点,则该完全二叉树的结点个数最多是
### 回答1:
255个。
解析:
由于完全二叉树的特点是除了最后一层,其它层都是满的,所以第6层的8个叶结点是前5层所有结点数的和,即:
1 + 2 + 4 + 8 + 16 + 8 = 39
所以该完全二叉树的高度为6,且共有39个结点。
又因为完全二叉树的结点数最多为2的h次方-1,其中h为树的高度,所以该完全二叉树的结点数最多为2的6次方-1=63-1=62。
但是由于第6层只有8个叶结点,所以该完全二叉树的结点数不足62个,最多只有61个。
综上所述,该完全二叉树的结点个数最多是255个。
### 回答2:
对于一棵完全二叉树,第 k 层最多有 2^(k-1) 个节点,因为第 k 层的节点编号是从 2^(k-1) 到 2^k-1。
根据题目,第 6 层有 8 个叶节点,叶节点只能在最后一层,所以第 6 层是最后一层,即这棵完全二叉树的深度为 6。从第 1 层到第 5 层每层都有满的节点数,即第 5 层的节点数为 2^4=16,第 4 层的节点数为 2^3=8,第 3 层的节点数为 2^2=4,第 2 层的节点数为 2^1=2,第 1 层的节点数为 2^0=1。因此,这棵完全二叉树前 5 层的节点总数为 1 + 2 + 4 + 8 + 16 = 31 个。
根据完全二叉树节点个数的特点,最后一层的节点数可以是 1~8 个,所以该完全二叉树的节点个数最多是前 5 层节点个数加上最后一层的最大节点数,即 31 + 8 = 39 个。因此,该完全二叉树的节点个数最多是 39 个。
### 回答3:
题目要求我们计算完全二叉树中结点的最大个数,因此我们需要确定完全二叉树的深度,进而计算结点的总数。
首先,由于完全二叉树的特点是除了最后一层外,其他层都是满的,因此可以根据题意推出该完全二叉树的深度为 $\lceil \log_2 8 + 1 \rceil = 4$。这里利用了一个公式,即完全二叉树的叶子节点数为 $2^k$,则它的深度为 $\lceil \log_2 2^k + 1 \rceil = \lceil k + 1 \rceil$。
然后,我们可以通过完全二叉树结点个数的公式 $2^{h} - 1$ 计算该完全二叉树的结点总数,其中 $h$ 代表完全二叉树的深度。利用这个公式,我们可以得到该完全二叉树的结点个数最多为 $2^{4} - 1 = 15$。
因此,答案是:该完全二叉树的结点个数最多是 15。
阅读全文