求解差分方程:y[n]+2y[n-1]=n-2.已知y[0]=1
时间: 2023-11-19 09:06:23 浏览: 145
差分方程的求解方法
我们可以使用递推的方法求解这个差分方程。将 n=0,1,2,3,... 代入差分方程中,得到:
n=0:y[0] + 2y[-1] = -2 ,即 y[-1] = -3/2
n=1:y[1] + 2y[0] = -1 ,即 y[1] = -3/2
n=2:y[2] + 2y[1] = 0 ,即 y[2] = 3/4
n=3:y[3] + 2y[2] = 3 ,即 y[3] = 3/8
可以发现,y[n] 的求解可以表示为 y[n] = (-2y[n-1] + n - 2)/1,其中 y[0] 已知为1。将这个递推式代入前面的计算结果中,可以得到:
y[0] = 1
y[1] = -3/2
y[2] = 3/4
y[3] = 3/8
y[4] = -1/16
y[5] = -1/32
...
因此,差分方程的通解为 y[n] = (-2y[n-1] + n - 2)/1,其中 y[0] = 1。
阅读全文