// 滤波 pcl::PassThrough<PointT> pass; pass.setFilterFieldName("z"); pass.setFilterLimits(0, 1.5); pass.setInputCloud(filtered_cloud); PointCloud::Ptr pass_filtered_cloud(new PointCloud); pass.filter(*pass_filtered_cloud);
时间: 2023-06-15 11:08:26 浏览: 173
这段代码是使用 PCL 库中的 PassThrough 滤波器对点云数据进行过滤。具体来说,通过 setFilterFieldName() 方法设置要过滤的字段名称(这里是 "z"),再通过 setFilterLimits() 方法设置过滤的上下限(这里是 0 和 1.5),接着 setInputCloud() 方法将要过滤的点云数据传入滤波器中,使用 filter() 方法对其进行滤波,最后将滤波后的点云数据保存到 pass_filtered_cloud 中。这段代码的作用是将点云数据中 z 值小于 0 或大于 1.5 的点过滤掉,只保留 z 值在 0 到 1.5 之间的点。
相关问题
// 读取点云数据 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);pcl::io::loadPCDFile<pcl::PointXYz>("input cloud.pcd",*cloud); 定义直通滤波器 pcl::PassThrough<pcl::PointxYZ> pass;pass.setInputCloud(cloud);pass.setFilterFieldName ("x") ; pass.setEilterLimits(0.0, 1.0);// 应用直通滤波器pcl::PointCloud<pcl::PointXz>::Ptr filtered cloud(new pcl::PointCloud<pcl::PointXYz>);pass.filter(*filtered cloud) ; //定义提取滤波器pcl::ExtractIndices<pcl::PointxYZ> extract;extract.setInputCloud(cloud) : extract.setIndices (pass.getRemovedIndices ()) ;extract .setNeaative(true) : / 应用提取滤波器pcl::PointCloud<pcl::PointXYZ>::Ptr extracted cloud(new pcl::PointCloud<pcl::PointXYz>);extract.filter(*extracted cloud) : // 保存滤波后的点云数据 pcl::io::savePCDFile<pcl::PointXYZ>("filtered cloud,pcd"*filtered cloud);pcl::io::savePCDFile<pcl::PointXYz>("extracted cloud.pcd"*extracted cloud) ;优化这段代码
:优化方法:
1. 增加注释,使得代码更易于理解。
2. 将代码分成多个函数,使得每个函数专门做一件事,利于维护和修改。
3. 减少冗余代码,将重复的代码封装成一个函数并重复利用,使代码更简洁。
4. 可以考虑并行化操作,提高代码执行效率。
修改后的代码如下:
// 读取点云数据
pcl::PointCloud<pcl::PointXYZ>::Ptr loadPointCloud(const std::string& fileName)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile<pcl::PointXYz>(fileName, *cloud);
return cloud;
}
// 直通滤波器
pcl::PointCloud<pcl::PointXYZ>::Ptr passThroughFilter(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud)
{
pcl::PassThrough<pcl::PointxYZ> pass;
pass.setInputCloud(cloud);
pass.setFilterFieldName("x");
pass.setEilterLimits(0.0, 1.0);
pcl::PointCloud<pcl::PointXz>::Ptr filtered(new pcl::PointCloud<pcl::PointXYz>);
pass.filter(*filtered);
return filtered;
}
// 提取滤波器
pcl::PointCloud<pcl::PointXYZ>::Ptr extractFilter(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, const std::vector<int>& removedIndices)
{
pcl::ExtractIndices<pcl::PointxYZ> extract;
extract.setInputCloud(cloud) ;
extract.setIndices(removedIndices);
extract.setNegative(true);
pcl::PointCloud<pcl::PointXYZ>::Ptr extracted(new pcl::PointCloud<pcl::PointXYz>);
extract.filter(*extracted);
return extracted;
}
// 保存滤波后的点云数据
void savePointCloud(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, const std::string& fileName)
{
pcl::io::savePCDFile<pcl::PointXYZ>(fileName, *cloud);
}
// 主函数
int main(int argc, char** argv)
{
// 读取点云数据
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud = loadPointCloud("input cloud.pcd");
// 应用直通滤波器
pcl::PointCloud<pcl::PointXYZ>::Ptr filteredCloud = passThroughFilter(cloud);
// 应用提取滤波器
std::vector<int> removedIndices = pass.getRemovedIndices();
pcl::PointCloud<pcl::PointXYZ>::Ptr extractedCloud = extractFilter(cloud, removedIndices);
// 保存滤波后的点云数据
savePointCloud(filteredCloud, "filtered cloud.pcd");
savePointCloud(extractedCloud, "extracted cloud.pcd");
return 0;
}
#include <iostream> #include <pcl/point_types.h> #include <pcl/filters/passthrough.h> int main (int argc, char** argv) { pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>); // Fill in the cloud data cloud->width = 5; cloud->height = 1; cloud->points.resize (cloud->width * cloud->height); for (std::size_t i = 0; i < cloud->points.size (); ++i) { cloud->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f); cloud->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f); cloud->points[i].z = 1024 * rand () / (RAND_MAX + 1.0f); } std::cerr << "Cloud before filtering: " << std::endl; for (std::size_t i = 0; i < cloud->points.size (); ++i) std::cerr << " " << cloud->points[i].x << " " << cloud->points[i].y << " " << cloud->points[i].z << std::endl; // Create the filtering object pcl::PassThrough<pcl::PointXYZ> pass; pass.setInputCloud (cloud); pass.setFilterFieldName ("z"); pass.setFilterLimits (0.0, 1.0); //pass.setFilterLimitsNegative (true); pass.filter (*cloud_filtered); std::cerr << "Cloud after filtering: " << std::endl; for (std::size_t i = 0; i < cloud_filtered->points.size (); ++i) std::cerr << " " << cloud_filtered->points[i].x << " " << cloud_filtered->points[i].y << " " << cloud_filtered->points[i].z << std::endl; return (0); }
这段代码看起来正确,但是如果你的问题是关于 VS 中的 PCL 库的话,我需要更多的信息才能帮助你解决问题。请提供以下信息:
1. 你使用的是哪个版本的 PCL 库?
2. 你的 VS 版本是多少?
3. 你的系统是 32 位还是 64 位?
4. 你的编译器是 MSVC 还是其他的编译器?
5. 你能否提供更详细的错误信息或警告信息?
阅读全文