逐行解释代码int alpha_beta_next(int depth, int alpha, int beta, int color) { if (depth == 0) { return evaluate(currBotColor); } vector<pair<int, int>> next_moves = generate_next_moves(); for (auto& next_move : next_moves) { int x = next_move.first; int y = next_move.second; gridInfo[x][y] = color; int score = -alpha_beta_next(depth - 1, -beta, -alpha, -color); gridInfo[x][y] = 0; if (score >= beta) { return score; } if (score > alpha) { alpha = score; } } return alpha; } int alpha_beta_two_steps(int depth, int alpha, int beta, int color) { if (depth == 0) { return evaluate(currBotColor); } vector<pair<int, int>> next_moves = generate_next_moves(); for (auto& next_move : next_moves) { int x1 = next_move.first; int y1 = next_move.second; gridInfo[x1][y1] = color; vector<pair<int, int>> next_moves2 = generate_next_moves(); for (auto& next_move2 : next_moves2) { int x2 = next_move2.first; int y2 = next_move2.second; gridInfo[x2][y2] = color; int score = -alpha_beta_two_steps(depth - 2, -beta, -alpha, -color); gridInfo[x2][y2] = 0; if (score >= beta) { gridInfo[x1][y1] = 0; return score; } if (score > alpha) { alpha = score; } } gridInfo[x1][y1] = 0; } return alpha; }

时间: 2024-02-14 10:08:20 浏览: 18
这段代码是一个基于Alpha-Beta剪枝算法的博弈树搜索算法。函数alpha_beta_next()实现了对当前局面的下一步决策,函数alpha_beta_two_steps()实现了在下一步决策的基础上再进行一步决策。 其中,参数depth表示搜索的深度,alpha和beta分别表示当前局面的估值下限和上限,color表示当前玩家的颜色。在搜索过程中,程序会遍历所有可能的下一步决策,并对于每一个决策进行一次递归搜索,直到达到搜索深度或者游戏结束。在递归搜索的过程中,程序会使用Alpha-Beta剪枝算法进行剪枝,以减少搜索时间。当搜索到达叶子节点时,程序会使用evaluate函数对当前局面进行估值,以确定当前局面的得分。在搜索过程中,程序会不断更新alpha和beta的值,以便进行剪枝。如果当前搜索结果比beta大,则剪枝并返回beta;如果比alpha大,则更新alpha的值。最后,程序会返回alpha作为该决策的估值。
相关问题

int alpha_beta_next(int depth, int alpha, int beta, int color) { if (depth == 0) { return evaluate(currBotColor); } vector<pair<int, int>> next_moves = generate_next_moves(); for (auto& next_move : next_moves) { int x = next_move.first; int y = next_move.second; gridInfo[x][y] = color; int score = -alpha_beta_next(depth - 1, -beta, -alpha, -color); gridInfo[x][y] = 0; if (score >= beta) { return score; } if (score > alpha) { alpha = score; } } return alpha; } int alpha_beta_two_steps(int depth, int alpha, int beta, int color) { if (depth == 0) { return evaluate(currBotColor); } vector<pair<int, int>> next_moves = generate_next_moves(); for (auto& next_move : next_moves) { int x1 = next_move.first; int y1 = next_move.second; gridInfo[x1][y1] = color; vector<pair<int, int>> next_moves2 = generate_next_moves(); for (auto& next_move2 : next_moves2) { int x2 = next_move2.first; int y2 = next_move2.second; gridInfo[x2][y2] = color; int score = -alpha_beta_two_steps(depth - 2, -beta, -alpha, -color); gridInfo[x2][y2] = 0; if (score >= beta) { gridInfo[x1][y1] = 0; return score; } if (score > alpha) { alpha = score; } } gridInfo[x1][y1] = 0; } return alpha; }在主函数中怎么调用

在主函数中,你可以先调用 generate_next_moves() 函数生成下一步可行的落子位置,然后根据你的需求选择使用 alpha_beta_next() 函数还是 alpha_beta_two_steps() 函数。调用时需要传入相应的参数,如下: // 调用 alpha_beta_next() int score = alpha_beta_next(depth, alpha, beta, currBotColor); // 调用 alpha_beta_two_steps() int score = alpha_beta_two_steps(depth, alpha, beta, currBotColor); 其中,depth 为搜索深度,alpha 和 beta 为剪枝过程中的参数,currBotColor 为当前自己的颜色。调用结束后,score 为搜索得到的最优分数。

逐行详细解释下列C语言代码:int alpha_beta(int depth, int alpha, int beta, int color) { if (depth == 0) { return evaluate(currBotColor); // 到达叶节点,返回估值 } int best_score = INT_MIN; vector<pair<int, int> > next_moves = generate_next_moves(); for (auto& next_move : next_moves) { int x = next_move.first; int y = next_move.second; gridInfo[x][y] = color; // 模拟落子 int score = -alpha_beta(depth - 1, -beta, -alpha, -color); // 递归搜索 gridInfo[x][y] = 0; // 撤销落子 if (score > best_score) { best_score = score; if (best_score > alpha) { alpha = best_score; } if (best_score >= beta) { break; // β剪枝 } } } return best_score; }

这段代码是一个alpha-beta剪枝算法的伪代码实现。alpha-beta剪枝算法是一种优化的搜索算法,用于在博弈树中寻找最优解,避免不必要的搜索,提高搜索效率。 函数的参数包括深度depth,alpha,beta,以及当前玩家的颜色color。函数的返回值为搜索到的最优解的分数。 在函数内部,首先判断是否到达叶节点(深度为0),如果是,则返回当前局面的估值。如果不是,则执行以下步骤: 1. 定义一个最好得分为INT_MIN(即负无穷)。 2. 生成下一步的所有可能落子点。 3. 对于每一个可能的落子点,模拟落子,然后递归调用alpha_beta函数,搜索下一步的最优解,并将得分取负(因为对手会选择最劣解),得到一个得分score。 4. 撤销落子。 5. 如果得分score比当前最好得分best_score要好,就更新best_score,并且如果best_score大于alpha,则更新alpha。如果best_score大于等于beta,则进行beta剪枝,退出循环。 6. 返回最好得分best_score。 这个函数是一个递归函数,每次递归深度减1,直到深度为0,然后返回估值。在递归过程中,使用alpha-beta剪枝算法,避免搜索不必要的分支,提高搜索效率。

相关推荐

根据代码完善主函数实现六子棋下棋// αβ剪枝函数 int alpha_beta(int depth, int alpha, int beta, int color) { if (depth == 0) { return evaluate(currBotColor); // 到达叶节点,返回估值 } int best_score = INT_MIN; vector > next_moves = generate_next_moves(); for (auto& next_move : next_moves) { int x = next_move.first; int y = next_move.second; gridInfo[x][y] = color; // 模拟落子 int score = -alpha_beta(depth - 1, -beta, -alpha, -color); // 递归搜索 gridInfo[x][y] = 0; // 撤销落子 if (score > best_score) { best_score = score; if (best_score > alpha) { alpha = best_score; } if (best_score >= beta) { break; // β剪枝 } } } return best_score; } int main() { int x0, y0, x1, y1; // 分析自己收到的输入和自己过往的输出,并恢复棋盘状态 int turnID; cin >> turnID; currBotColor = grid_white; // 先假设自己是白方 for (int i = 0; i < turnID; i++) { // 根据这些输入输出逐渐恢复状态到当前回合 cin >> x0 >> y0 >> x1 >> y1; if (x0 == -1) currBotColor = grid_black; // 第一回合收到坐标是-1, -1,说明我是黑方 if (x0 >= 0) ProcStep(x0, y0, x1, y1, -currBotColor, false); // 模拟对方落子 if (i < turnID - 1) { cin >> x0 >> y0 >> x1 >> y1; if (x0 >= 0) ProcStep(x0, y0, x1, y1, currBotColor, false); // 模拟己方落子 } } /**********************************************************************************/ /在下面填充你的代码,决策结果(本方将落子的位置)存入X1、Y1、X2、Y2中/ int X1, Y1, X2, Y2; bool selfFirstBlack = (turnID == 1 && currBotColor == grid_black);//本方是黑方先手 if(selfFirstBlack){ X1=8; Y1=8; X2=-1; Y2=-1; } else{ } // 决策结束,向平台输出决策结果 cout << X1 << ' ' << Y1 << ' ' << X2 << ' ' << Y2 << endl; return 0; }

/ αβ剪枝函数 int alpha_beta(int depth, int alpha, int beta, int color) { if (depth == 0) { return evaluate(currBotColor); // 到达叶节点,返回估值 } int best_score = INT_MIN; vector > next_moves = generate_next_moves(); for (auto& next_move : next_moves) { int x = next_move.first; int y = next_move.second; gridInfo[x][y] = color; // 模拟落子 int score = -alpha_beta(depth - 1, -beta, -alpha, -color); // 递归搜索 gridInfo[x][y] = 0; // 撤销落子 if (score > best_score) { best_score = score; if (best_score > alpha) { alpha = best_score; } if (best_score >= beta) { break; // β剪枝 } } } return best_score; } int main() { int x0, y0, x1, y1; // 分析自己收到的输入和自己过往的输出,并恢复棋盘状态 int turnID; cin >> turnID; currBotColor = grid_white; // 先假设自己是白方 for (int i = 0; i < turnID; i++) { // 根据这些输入输出逐渐恢复状态到当前回合 cin >> x0 >> y0 >> x1 >> y1; if (x0 == -1) currBotColor = grid_black; // 第一回合收到坐标是-1, -1,说明我是黑方 if (x0 >= 0) ProcStep(x0, y0, x1, y1, -currBotColor, false); // 模拟对方落子 if (i < turnID - 1) { cin >> x0 >> y0 >> x1 >> y1; if (x0 >= 0) ProcStep(x0, y0, x1, y1, currBotColor, false); // 模拟己方落子 } } /************************************************************************************/ /***在下面填充你的代码,决策结果(本方将落子的位置)存入startX、startY、resultX、resultY中*****/ //下面仅为随机策略的示例代码,且效率低,可删除 int X1, Y1, X2, Y2; bool selfFirstBlack = (turnID == 1 && currBotColor == grid_black);//本方是黑方先手 if(selfFirstBlack){ X1=8; Y1=8; X2=-1; Y2=-1; } else{ } // 决策结束,向平台输出决策结果 cout << X1 << ' ' << Y1 << ' ' << X2 << ' ' << Y2 << endl; return 0; }完善主函数实现六子棋下棋

最新推荐

recommend-type

行业分析模板--初学者必备gl.ppt

行业分析模板--初学者必备gl.ppt
recommend-type

基于微信小程序端的视频社交软件 + 后台管理系统(仿抖音).zip

简介随着微信的普及,小视频的流行,我们设计一款基于微信小程序端的视频社交软件 + 后台管理系统作为自己专科毕业设计----秀视频-微信小程序端(短视频社交小程序,用户可以在小程序上发布自己的短视频 并且经过我们的平台加入滤镜或者背景音乐制作出独具特色的短视频。并实现了点赞、评论、下载、分享、转发等功能的小程序)---的后台管理系统,主要实现了人员的管理,短视频的管理,背景音乐的管理,登陆注册,权限验证,单点登陆等等。 从需求分析,功能设计,前端到后台,再到数据库的设计。一点点的积累,一点点的完善,预计小程序端+后台管理系统开发周期一个月(每天更新)。 对一个开发人员来说,如果想单纯的做出这些功能,其实并不难。 难的是对于这些功能细节的把控,项目整体的友好程度,用户的体验效果;对并发的考虑,对恶意请求,对流畅度这些细节的考虑等等。
recommend-type

基于matlab实现麦克风阵列的声源定位,四元十字阵的matlab仿真.rar

基于matlab实现麦克风阵列的声源定位,四元十字阵的matlab仿真.rar
recommend-type

某钢厂钢铁废水处理图纸.zip

污水处理
recommend-type

基于yoloV4,检测茶叶中的杂质,并利用混淆矩阵计算识别率

混淆矩阵 检测茶叶中的杂质,并利用混淆矩阵计算出精确率和误判率 小技巧的设置 在train.py和train_eager.py文件下: 1、mosaic参数可用于控制是否实现Mosaic数据增强。 2、Cosine_scheduler可用于控制是否使用学习率余弦退火衰减。 3、label_smoothing可用于控制是否Label Smoothing平滑。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

去除字符串s="ab23cde"中的数字,构成一个新的字符串"abcde"。

可以使用正则表达式来匹配并替换字符串中的数字: ```python import re s = "ab23cde" new_s = re.sub(r'\d+', '', s) print(new_s) # 输出:abcde ``` 其中,`\d` 表示匹配数字,`+` 表示匹配一个或多个数字,`re.sub()` 函数用来替换匹配到的数字为空字符串。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。