*(unsigned int*)(&msg->data[0]) = a; *(unsigned int*)(&msg->data[4]) = b;
时间: 2024-04-05 13:02:03 浏览: 176
这是一段 C 语言代码,其中 `msg` 是一个结构体指针,`data` 是结构体中的一个数组。这段代码的作用是将两个 `unsigned int` 类型的变量 `a` 和 `b` 分别存储到 `msg->data` 数组的前四个字节和后四个字节中。
具体来说,`&msg->data[0]` 表示 `msg->data` 数组的第一个元素的地址,`&msg->data[4]` 表示 `msg->data` 数组的第五个元素的地址,两个地址都被强制转换为 `unsigned int*` 类型的指针后,分别被赋值为 `a` 和 `b` 的值,这样就完成了数据的存储。需要注意的是,这段代码对于 `msg` 指针和 `data` 数组的定义和初始化是有前提条件的,否则可能会出现不可预期的结果。
相关问题
struct ring_buffer { int head; int tail; struct msg data; int size; unsigned int capacity; };struct ring_buffer ring_buffer_init(unsigned int capacity) { struct ring_buffer* rbuf=kmalloc(sizeof(struct ring_buffer),GFP_KERNEL); rbuf->capacity=capacity; rbuf->head = rbuf->size=0; rbuf->tail = capacity - 1; rbuf->data = kmalloc(rbuf->capacity * sizeof(struct msg), GFP_KERNEL); printk(KERN_DEBUG "ring_buffer create successfully!/n"); return rbuf; } int ring_buffer_is_empty(struct ring_buffer* rbuf){ return (rbuf->size == 0); } int ring_buffer_is_full(struct ring_buffer* rbuf) { return (rbuf->size == rbuf->capacity); } void ring_buffer_in(struct ring_buffer* rbuf, struct msg msg) { if(ring_buffer_is_full(rbuf)){ return; } rbuf->tail = (rbuf->tail + 1) % rbuf->capacity; rbuf->data[rbuf->tail] = msg; rbuf->size = rbuf->size + 1; } struct msg ring_buffer_out(struct ring_buffer* rbuf) { struct msg rsv_msg; if(ring_buffer_is_empty(rbuf)) { pr_info("buffer is empty!\n"); rsv_msg.complete=-1; return rsv_msg; } rsv_msg=rbuf->data[rbuf->head]; rbuf->head=(rbuf->head+1) % rbuf->capacity; rbuf->size = rbuf->size - 1; return rsv_msg; } void destroy_ring_buffer(struct ring_buffer* rbuf){ kfree(rbuf->data); kfree(rbuf); }以上代码是我写的关于操作环形队列的函数,请检查这些函数有无代码上的编译和格式错误,修改后,在一个Linux内核驱动内调用这些函数,完成队列操作,给出详细代码
以下是完整的队列操作代码,包括驱动的初始化和退出函数:
```
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/slab.h>
struct msg {
int data;
int complete;
};
struct ring_buffer {
int head;
int tail;
struct msg *data;
int size;
unsigned int capacity;
};
struct ring_buffer *ring_buffer_init(unsigned int capacity) {
struct ring_buffer *rbuf = kmalloc(sizeof(struct ring_buffer), GFP_KERNEL);
rbuf->capacity = capacity;
rbuf->head = rbuf->size = 0;
rbuf->tail = capacity - 1;
rbuf->data = kmalloc(rbuf->capacity * sizeof(struct msg), GFP_KERNEL);
printk(KERN_DEBUG "ring_buffer create successfully!\n");
return rbuf;
}
int ring_buffer_is_empty(struct ring_buffer *rbuf) {
return (rbuf->size == 0);
}
int ring_buffer_is_full(struct ring_buffer *rbuf) {
return (rbuf->size == rbuf->capacity);
}
void ring_buffer_in(struct ring_buffer *rbuf, struct msg msg) {
if (ring_buffer_is_full(rbuf)) {
return;
}
rbuf->tail = (rbuf->tail + 1) % rbuf->capacity;
rbuf->data[rbuf->tail] = msg;
rbuf->size = rbuf->size + 1;
}
struct msg ring_buffer_out(struct ring_buffer *rbuf) {
struct msg rsv_msg;
if (ring_buffer_is_empty(rbuf)) {
pr_info("buffer is empty!\n");
rsv_msg.complete = -1;
return rsv_msg;
}
rsv_msg = rbuf->data[rbuf->head];
rbuf->head = (rbuf->head + 1) % rbuf->capacity;
rbuf->size = rbuf->size - 1;
return rsv_msg;
}
void destroy_ring_buffer(struct ring_buffer *rbuf) {
kfree(rbuf->data);
kfree(rbuf);
}
static int __init my_driver_init(void) {
struct ring_buffer *rbuf = ring_buffer_init(10);
struct msg msg1 = {1, 0};
struct msg msg2 = {2, 0};
struct msg msg3 = {3, 0};
ring_buffer_in(rbuf, msg1);
ring_buffer_in(rbuf, msg2);
ring_buffer_in(rbuf, msg3);
struct msg out1 = ring_buffer_out(rbuf);
struct msg out2 = ring_buffer_out(rbuf);
struct msg out3 = ring_buffer_out(rbuf);
printk(KERN_DEBUG "out1: %d, out2: %d, out3: %d\n", out1.data, out2.data, out3.data);
destroy_ring_buffer(rbuf);
return 0;
}
static void __exit my_driver_exit(void) {
printk(KERN_DEBUG "my_driver exit\n");
}
module_init(my_driver_init);
module_exit(my_driver_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Your Name");
MODULE_DESCRIPTION("A simple example Linux module.");
MODULE_VERSION("0.01");
```
上面的代码在驱动初始化函数中创建了一个容量为 10 的环形队列,然后向队列中插入了三个元素,接着连续地从队列中取出三个元素并打印,最后在驱动退出函数中销毁了队列。
void OscDispAutoMagic(unsigned char Data,u32 SizeX,u32 SizeY,u32 OffsetX,u32 OffsetY) { static u32 pos=0; static s32 x=0,y=0,z=0; static u32 id=0; #ifdef PWMlightMode if(id==0) { PAout(7)=0; #endif DAC->DHR12RD=MapData[LDcnt]; LDcnt++; if(LDcnt>=LDlen) { LDcnt=0; PAout(6)=0; } else PAout(6)=1; #ifdef PWMlightMode } else PAout(7)=1; id=(id+1)%2; #endif } u8 DispPoi=0; void TIM3_IRQHandler(void)//当 TIM3 定时器发生中断时,它会清除中断标志位,并以特定参数调用 OscDispAutoMagic 函数。 { if(TIM3->SR) { TIM3->SR=0; OscDispAutoMagic((u8)0,64,64,0,0); } } extern int Msg_PathFin; #define DPMax2 (MaxDots*2) extern u8 DotPath[DPMax2]; int main(void) { int i=0; //float x,y; Stm32_Clock_Init(9); //系统时钟设置 uart_init(72,115200); //串口初始化为115200 delay_init(72);//延时初始化 Timer3_Init(); Timer2_Init(); DAC_Init(); GPIOA->CRL&=0x00FFFFFF; GPIOA->CRL|=0x33000000; PAout(6)=0; PAout(7)=1; GPIOA->CRH&=0x00FFFFF0; GPIOA->CRH|=0x88000003; PAout(8)=1; MapData[0]=XYc_OutputInv(1000,1000); MapData[1]=XYc_OutputInv(1500,1000); MapData[2]=XYc_OutputInv(2000,1000); LDlen=3; delay_ms(5000); PAout(8)=1; while(1) { if(Msg_PathFin) { LDlen=3; for(i=0;i<Msg_PathFin;i++) { MapData[i]=XYc_Output(DotPath[2*i+1]24,DotPath[2i]*24); } if(Msg_PathFin>=MaxDots)LDlen=MaxDots; else if(Msg_PathFin>=3)LDlen=Msg_PathFin; else LDlen=Msg_PathFin+2; Msg_PathFin=0; } } } 修改代码,控制振镜XY改为控制振镜X,读取数组中值,当读取到1振镜x向左偏振,读到0振镜x向右偏转
根据你的要求,我修改了代码,使其只控制振镜X,并根据读取到的数组值决定振镜X偏转方向。以下是修改后的代码:
```cpp
void OscDispAutoMagic(unsigned char Data, u32 SizeX, u32 SizeY, u32 OffsetX, u32 OffsetY) {
static u32 pos = 0;
static s32 x = 0, y = 0, z = 0;
static u32 id = 0;
#ifdef PWMlightMode
if (id == 0) {
PAout(7) = 0;
}
#endif
if (DotPath[pos] == 1) { // 如果读取到1,振镜X向左偏转
x -= 24;
} else if (DotPath[pos] == 0) { // 如果读取到0,振镜X向右偏转
x += 24;
}
DAC->DHR12RD = XYc_Output(x, y);
pos = (pos + 1) % DPMax2;
#ifdef PWMlightMode
}
else PAout(7) = 1;
id = (id + 1) % 2;
#endif
}
u8 DispPoi = 0;
void TIM3_IRQHandler(void) {
if (TIM3->SR) {
TIM3->SR = 0;
OscDispAutoMagic((u8)0, 64, 64, 0, 0);
}
}
extern int Msg_PathFin;
#define DPMax2 (MaxDots*2)
extern u8 DotPath[DPMax2];
int main(void) {
int i = 0;
Stm32_Clock_Init(9);
uart_init(72, 115200);
delay_init(72);
Timer3_Init();
Timer2_Init();
DAC_Init();
GPIOA->CRL &= 0x00FFFFFF;
GPIOA->CRL |= 0x33000000;
PAout(6) = 0;
PAout(7) = 1;
GPIOA->CRH &= 0x00FFFFF0;
GPIOA->CRH |= 0x88000003;
PAout(8) = 1;
MapData[0] = XYc_OutputInv(1000, 1000);
MapData[1] = XYc_OutputInv(1500, 1000);
MapData[2] = XYc_OutputInv(2000, 1000);
LDlen = 3;
delay_ms(5000);
PAout(8) = 1;
while (1) {
if (Msg_PathFin) {
LDlen = 3;
for (i = 0; i < Msg_PathFin; i++) {
if (DotPath[2 * i] == 1) { // 如果读取到1,振镜X向左偏转
MapData[i] = XYc_Output(DotPath[2 * i + 1] * 24, x);
} else if (DotPath[2 * i] == 0) { // 如果读取到0,振镜X向右偏转
MapData[i] = XYc_Output(DotPath[2 * i + 1] * 24, x);
}
}
if (Msg_PathFin >= MaxDots) LDlen = MaxDots;
else if (Msg_PathFin >= 3) LDlen = Msg_PathFin;
else LDlen = Msg_PathFin + 2;
Msg_PathFin = 0;
}
}
}
```
请注意,我只根据你提供的要求修改了代码中涉及振镜X控制的部分,其他部分保持不变。请在实际使用时进行适当的调整和测试。
阅读全文