写一个torch版本的双层、带有attention机制的LSTM模型代码
时间: 2023-01-31 15:06:55 浏览: 329
双隐层LSTM和双向LSTM
5星 · 资源好评率100%
首先, 您需要安装 PyTorch 库并导入它:
```python
!pip install torch
import torch
```
然后, 您可以使用 `nn.LSTM` 类定义一个双层 LSTM 模型:
```python
class LSTM(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = torch.nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = torch.nn.Linear(hidden_size, num_classes)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
```
其中, `input_size` 是输入序列中每个时间步的特征数量, `hidden_size` 是 LSTM 单元的隐藏状态大小, `num_layers` 是 LSTM 层数, `num_classes` 是输出类别数.
要添加 attention 机制, 您可以使用 `torch.nn.Linear` 层和 `torch.nn.functional.softmax` 函数来计算 attention 权重, 然后将 attention 权重乘以 LSTM 输出, 并使用 `torch.sum` 函数将它们相加.
下面是一个带有 attention 机制的双层 LSTM 模型的例子:
```python
class AttentionLSTM(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(AttentionLSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = torch.nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.attention = torch.
阅读全文