在此基础上建立copula模型,并用蒙特卡罗法法计算VaR和ES值,给出r代码
时间: 2024-03-17 09:40:02 浏览: 129
好的,以下是在EGARCH模型的基础上建立copula模型,并用蒙特卡罗法计算VaR和ES值的R代码:
首先,我们需要加载所需的包:
```R
library(tidyverse)
library(rugarch)
library(copula)
```
接着,我们将之前建立的EGARCH模型对应的模型参数提取出来,并将其作为copula模型的参数:
```R
# 提取AAPL股票EGARCH模型参数
aapl_params <- coef(aapl_fit)
# 提取GOOG股票EGARCH模型参数
goog_params <- coef(goog_fit)
# 将EGARCH模型参数作为copula模型参数
aapl_copula_params <- aapl_params[c("mu", "alpha1", "beta1", "gamma1", "delta", "shape")]
goog_copula_params <- goog_params[c("mu", "alpha1", "beta1", "gamma1", "delta", "shape")]
```
接下来,我们可以使用`normalCopula()`函数建立高斯copula模型,并使用`mvdc()`函数将其转换为多元随机变量分布:
```R
# 建立高斯copula模型
aapl_copula <- normalCopula(param = aapl_copula_params, dim = 2)
goog_copula <- normalCopula(param = goog_copula_params, dim = 2)
# 将高斯copula模型转换为多元随机变量分布
aapl_mvd <- mvdc(copula = aapl_copula, margins = c("norm", "norm"),
paramMargins = list(list(mean = aapl_params["mu"], sd = sqrt(aapl_fit@fit$variance.model$omega)),
list(mean = aapl_params["mu"], sd = sqrt(aapl_fit@fit$variance.model$omega))))
goog_mvd <- mvdc(copula = goog_copula, margins = c("norm", "norm"),
paramMargins = list(list(mean = goog_params["mu"], sd = sqrt(goog_fit@fit$variance.model$omega)),
list(mean = goog_params["mu"], sd = sqrt(goog_fit@fit$variance.model$omega))))
```
我们可以使用`qmvdc()`函数计算VaR和ES值:
```R
# 计算VaR和ES值
aapl_var <- qmvdc(aapl_mvd, probs = 0.05)
goog_var <- qmvdc(goog_mvd, probs = 0.05)
aapl_es <- expectile(aapl_mvd, probs = 0.05, method = "QMC")
goog_es <- expectile(goog_mvd, probs = 0.05, method = "QMC")
```
最后,我们可以打印出计算得到的VaR和ES值:
```R
# 打印VaR和ES值
cat("AAPL VaR (5%):", aapl_var[1], "\n")
cat("GOOG VaR (5%):", goog_var[1], "\n")
cat("AAPL ES (5%):", aapl_es, "\n")
cat("GOOG ES (5%):", goog_es, "\n")
```
以上就是在EGARCH模型的基础上建立copula模型,并用蒙特卡罗法计算VaR和ES值的R代码。
阅读全文