设一个图采用邻接矩阵存储结构,图的类定义为: public class Graph { private Object[] vex; //顶点表 private boolean [][]edge; // edge 为邻接短阵,edge[i][j]值为true表示i号顶点到j号顶点有边,否则表示没有边 private boolean[]visited; // 访问标志数组 private int vn; //顶点个数 } 用Java编写广度优先遍历西数bft(),其中的访问操作使用visit(v),v为顶点所存数据。 注:初始化空队列用new Queue(),顶点序号v入队用Queue中的enQueue(v)方法,出队用Queue中的deQueue()方法,返回值为出队的顶点序号,判断队列是否为空Queue中的isEmpty()方法。

时间: 2023-11-27 21:55:14 浏览: 36
以下是广度优先遍历bft()的Java代码实现: ``` public void bft(int start, Object[] vex, boolean[][] edge) { Queue queue = new Queue(); // 初始化空队列 visited = new boolean[vn]; // 初始化访问标志数组 queue.enQueue(start); // 将起始顶点序号入队 visited[start] = true; // 标记起始顶点已访问 while (!queue.isEmpty()) { // 当队列非空时,执行循环 int v = (int) queue.deQueue(); // 取出队头顶点 visit(vex[v]); // 访问该顶点所存数据 for (int i = 0; i < vn; i++) { // 遍历该顶点的所有邻接点 if (edge[v][i] && !visited[i]) { // 如果有边且未访问过 queue.enQueue(i); // 将该邻接点入队 visited[i] = true; // 标记该邻接点已访问 } } } } ``` 其中,visit(v)为访问操作,需要根据实际情况进行定义。
相关问题

设一个图采用邻接表存储结构,边结点类定义如下: public class Edge { public int adj; public Edge next;} 顶点结点类定义如下: public class Vex { public Object data; public Edge first;} 图的类定义为: public class Graph { private Vex[] vex, private boolean[]visited; private int vn; ... } 用Javo编写深度优先遍历函数dft(),其中的访问操作使用visit(v),v为顶点所存数据。

下面是使用邻接表存储结构来实现深度优先遍历的Java代码: ``` public class Graph { private Vex[] vex; private boolean[] visited; private int vn; // 深度优先遍历函数 public void dft(int v, Visit visit) { visited = new boolean[vn]; dftHelper(v, visit); } // 辅助函数,递归遍历顶点v的邻接点 private void dftHelper(int v, Visit visit) { visited[v] = true; visit(vex[v].data); Edge e = vex[v].first; while (e != null) { int adj = e.adj; if (!visited[adj]) { dftHelper(adj, visit); } e = e.next; } } // 定义访问操作的接口 public interface Visit { void visit(Object data); } } public class Vex { public Object data; public Edge first; } public class Edge { public int adj; public Edge next; } ``` 在上面的代码中,我们定义了一个Graph类来表示图,其中包含了顶点数组vex、visited数组和顶点数vn。我们通过dft函数来进行深度优先遍历,visit操作则通过Visit接口来定义。在dftHelper函数中,我们先将当前顶点v标记为已访问,并对其进行visit操作。之后,我们遍历v的所有邻接点,如果某个邻接点adj还没有被访问过,则递归访问它。最后,我们需要在调用dft函数之前先创建visited数组,并将其中所有元素初始化为false,以确保所有顶点都能被遍历到。

个有向图采用邻接表存储结构,边结点类定义如下: public class Edge{ public int adj; //邻接点在顶点表中的下标 public Edge next; 74133220935 顶点结点类定义如下: public class Vex{ public Object data; public Edge first; 22093 3322093 图的类定义为: public class Graph ( private Vex vex; //顶点表 private int vn; //顶点个数 注:初始化空栈用new Stack0, 顶点序号v入栈用stack中的push(√方法,出栈Stack中的pop0方 法,返回值为出栈的顶点序号,判|断栈是否为空用Stack中的isEmp ty0方法。 用Java编写拓扑排序函数booleaan topoSort(Object] a)如下5,其中排序结果(顶点的data域的 值)写入a数组,函数返回值为true表示成功,为false表示存在环

以下是用Java编写的拓扑排序函数: ``` public boolean topoSort(Object[] a) { int[] inDegree = new int[vn]; // 存储每个顶点的入度 Stack<Integer> stack = new Stack<>(); // 存储入度为0的顶点的序号 // 统计每个顶点的入度 for (int i = 0; i < vn; i++) { Edge edge = vex[i].first; while (edge != null) { inDegree[edge.adj]++; edge = edge.next; } } // 将入度为0的顶点入栈 for (int i = 0; i < vn; i++) { if (inDegree[i] == 0) { stack.push(i); } } int index = 0; // a数组的下标 while (!stack.isEmpty()) { int v = stack.pop(); // 取出入度为0的顶点 a[index++] = vex[v].data; // 将该顶点的data域的值存入a数组中 // 将与该顶点相邻的顶点的入度减1,并将入度变为0的顶点入栈 Edge edge = vex[v].first; while (edge != null) { int adj = edge.adj; inDegree[adj]--; if (inDegree[adj] == 0) { stack.push(adj); } edge = edge.next; } } // 判断是否存在环 if (index != vn) { return false; } else { return true; } } ``` 首先,初始化一个数组inDegree,存储每个顶点的入度。然后,遍历整个邻接表,统计每个顶点的入度。接着,将入度为0的顶点的序号入栈。循环中,每次取出入度为0的顶点,将该顶点的data域的值存入a数组中,并将与该顶点相邻的顶点的入度减1,若有顶点的入度变为0,将其入栈。最后,判断a数组中的元素个数是否等于顶点个数vn,若相等,则拓扑排序成功,返回true,否则,存在环,返回false。

相关推荐

最新推荐

recommend-type

3796 i-FRAME 安装、操作和维护手册

3796 i-FRAME 安装、操作和维护手册
recommend-type

我的visio画图 资源备用

我的visio画图
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

ActionContext.getContext().get()代码含义

ActionContext.getContext().get() 是从当前请求的上下文对象中获取指定的属性值的代码。在ActionContext.getContext()方法的返回值上,调用get()方法可以获取当前请求中指定属性的值。 具体来说,ActionContext是Struts2框架中的一个类,它封装了当前请求的上下文信息。在这个上下文对象中,可以存储一些请求相关的属性值,比如请求参数、会话信息、请求头、应用程序上下文等等。调用ActionContext.getContext()方法可以获取当前请求的上下文对象,而调用get()方法可以获取指定属性的值。 例如,可以使用 Acti
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种
recommend-type

设计一个算法,输出在顺序表{3,6,2,10,1,8,5,7,4,9}中采用顺序方法查找关键字5的过程。

好的,我来回答你的问题。 在顺序表中查找关键字5的过程如下: 1. 从顺序表的第一个元素(即3)开始,逐个比较元素的值与目标值5是否相等。 2. 发现第一个元素3不等于目标值5,继续向下查找。 3. 查找到第三个元素2时,发现该元素也不等于目标值5,继续向下查找。 4. 查找到第四个元素10时,发现该元素也不等于目标值5,继续向下查找。 5. 查找到第五个元素1时,发现该元素也不等于目标值5,继续向下查找。 6. 查找到第六个元素8时,发现该元素也不等于目标值5,继续向下查找。 7. 查找到第七个元素5时,发现该元素等于目标值5,查找成功。 因此,顺序表中采用顺序方法查找关键