python单纯形法代码
时间: 2023-10-12 10:18:59 浏览: 115
你好,以下是一个使用Python实现单纯形法求解线性规划问题的示例代码:
```python
import numpy as np
def simplex_method(c, A, b):
m, n = A.shape
c = np.concatenate([c, [0]])
A = np.concatenate([A, np.eye(m)], axis=1)
z = np.zeros(n + 1)
B = np.arange(n, n + m)
while True:
cb = c[B]
Ab = A[:, B]
y = cb @ Ab
cn = c - y @ A
if np.all(cn >= 0):
break
j0 = np.argmin(cn)
Aj0 = A[:, j0]
if np.all(Aj0 <= 0):
return np.inf, None
xB = np.linalg.solve(Ab, b)
q = xB / Aj0
i0 = np.argmin(q)
x0 = q[i0]
B[i0] = j0
xB = np.linalg.solve(A[:, B], b)
x = np.zeros(n)
x[B] = xB
return c @ x, x
```
使用方法如下:
```python
c = np.array([1, 2, 3])
A = np.array([[1, 2, 2],
[2, 1, 2],
[2, 2, 1]])
b = np.array([20, 20, 20])
z, x = simplex_method(c, A, b)
print(f"最优解: {x}")
print(f"最优值: {z}")
```
以上示例代码实现了求解如下线性规划问题:
```
maximize 1*x1 + 2*x2 + 3*x3
subject to x1 + 2*x2 + 2*x3 <= 20
2*x1 + 1*x2 + 2*x3 <= 20
2*x1 + 2*x2 + 1*x3 <= 20
x1, x2, x3 >= 0
```
阅读全文