step = 0 # 统计总共的步数 flag = True # 控制游戏是否结束 # 通过函数实现角色走的步数 def walk(user1, user2): # 获取全局变量 global step global flag while True: choose_step_user = int(input(user1 + "请输入你要走几步")) if choose_step_user > 3 or choose_step_user < 1: print("输入错误,请输入1,2,3") else: step = step + choose_step_user print("目前已经走了%d%step") if step == 17: print("恭喜" + user1 + "获胜") flag = False # 判断为17直接结束游戏 elif step > 17: print("恭喜" + user2 + "获胜") flag = False # 如果当前步数大于18则对方胜利 break usera = input("请输入第一位游戏者的名字") userb = input("请输入第二位游戏者的名字") while True: # 控制第一位游戏者行走 walk(usera, userb) if flag == False: break # 控制第二位游戏者行走 walk(userb, usera) if flag == False: break
时间: 2024-02-14 18:11:12 浏览: 110
这段代码是一个简单的由两个玩家交替输入步数的走路游戏,目标是先走到17步的玩家获胜。
代码的实现过程如下:
1. 定义了两个全局变量 `step` 和 `flag`,分别用于统计总共的步数和控制游戏是否结束;
2. 定义了一个 `walk()` 函数,用于让玩家输入步数,并根据输入的步数更新全局变量 `step`,输出当前总步数,并判断胜负;
3. 在主程序中,通过循环交替让两位玩家调用 `walk()` 函数输入步数,直到有一方获胜,循环结束。
需要注意的一些问题:
1. 在输出当前步数时,代码中的 `%step` 应该为 `% step`;
2. 在判断胜负时,代码中的 `17` 应该改为 `18`,因为如果一方恰好走到了17步,则另一方还可以走一步,达到18步,才能判断胜负;
3. 如果一方输入的步数已经导致总步数超过了18步,那么应该输出另一方获胜,而不是当前输入步数的玩家获胜。可以在判断胜负时加入额外的判断条件。
除此之外,代码还可以做进一步的优化,例如可以将输入步数和更新步数的操作封装成一个函数,以减少重复代码。
相关问题
解释: self.epsilon = 0.1 if e_greedy_increment is not None else self.epsilon_max # ————————————————————解释 self.lr_decay_rate = 0.95 # 学习衰减速率、步数的作用是什么—————————————— self.lr_decay_step = 10000 self.lr = tf.train.exponential_decay( self.learning_rate, self.global_step, self.lr_decay_step, self.lr_decay_rate, staircase=True ) # 该函数定义的作用———————————————————————— self.l_r = self.learning_rate # 下面三者定义的作用—————————————————————————— self.gama = 3 # 拉格朗日乘子 self.tau = 0.5 # 计算reward滑动平均的参数 self.r_base = [0]
解释:
1. self.epsilon = 0.1 if e_greedy_increment is not None else self.epsilon_max:
这行代码是用来设置epsilon的值。epsilon是用于控制在强化学习中探索和利用之间的平衡。如果e_greedy_increment不为None,即存在增量值,那么epsilon的初始值为0.1;否则,epsilon的初始值为self.epsilon_max。
2. self.lr_decay_rate = 0.95和self.lr_decay_step = 10000:
这两行代码是用于定义学习率的衰减速率和衰减步数。学习率衰减是为了让模型在训练过程中逐渐降低学习率,以便更好地收敛到最优解。在这里,学习率以指数衰减的方式进行更新,每经过10000个步骤,学习率会以0.95的衰减速率进行衰减。
3. self.lr = tf.train.exponential_decay(self.learning_rate, self.global_step, self.lr_decay_step, self.lr_decay_rate, staircase=True):
这行代码定义了学习率的指数衰减方式。tf.train.exponential_decay函数用于计算学习率的衰减值。其中,learning_rate是初始学习率,global_step是当前训练步数,lr_decay_step是衰减步数,lr_decay_rate是衰减速率,staircase=True表示学习率以阶梯函数的形式进行衰减。
4. self.l_r = self.learning_rate:
这行代码将初始学习率赋值给l_r,可能用于后续的学习率更新。
5. self.gama = 3、self.tau = 0.5和self.r_base = [0]:
这三行代码定义了一些参数。gama是拉格朗日乘子,用于某些优化问题中的约束条件;tau是计算reward滑动平均的参数,用于平滑reward的变化;r_base是一个包含单个元素0的列表,可能用于存储reward的基准值。
检查代码是否有错误或异常:class CosineAnnealingWarmbootingLR: def __init__(self, base_lr=0.00001, epochs=0, eta_min=0.05, steps=[], step_scale=0.8, lf=None, batchs=0, warmup_epoch=0, epoch_scale=1.0): # 初始化函数,接受一些参数 self.warmup_iters = batchs * warmup_epoch # 热身迭代次数 self.eta_min = eta_min # 最小学习率 self.iters = -1 # 当前迭代次数 self.iters_batch = -1 # 当前批次迭代次数 self.base_lr = base_lr # 初始学习率 self.step_scale = step_scale # 步长缩放因子 steps.sort() # 步长列表排序 self.steps = [warmup_epoch] + [i for i in steps if (i < epochs and i > warmup_epoch)] + [epochs] # 步长列表 self.gap = 0 # 步长间隔 self.last_epoch = 0 # 上一个 epoch self.lf = lf # 学习率函数 self.epoch_scale = epoch_scale # epoch 缩放因子 def step(self, external_iter=None): # 学习率调整函数 self.iters = 1 # 当前迭代次数 if external_iter is not None: self.iters = external_iter iters = self.iters - self.warmup_iters # 当前迭代次数减去热身迭代次数 last_epoch = self.last_epoch # 上一个 epoch scale = 1.0 # 缩放因子 for i in range(len(self.steps)-1): if (iters <= self.steps[i+1]): self.gap = self.steps[i+1] - self.steps[i] # 步长间隔 iters = iters - self.steps[i] # 当前迭代次数减去当前步长 last_epoch = self.steps[i] # 上一个 epoch if i != len(self.steps)-2: self.gap *= self.epoch_scale # 如果不是最后一个步长,乘以 epoch 缩放因子 break scale *= self.step_scale # 缩放因子乘以步长缩放因子 if self.lf is None: self.base_lr= scale * self.base_lr * ((((1 - math.cos(iters * math.pi / self.gap)) / 2) ** 1.0) * (1.0 - self.eta_min) + self.eta_min) # 计算学习率 else: self.base_lr = scale * self.base_lr * self.lf(iters, self.gap) # 使用学习率函数计算学习率 self.last_epoch = last_epoch # 更新上一个 epoch return self.base_lr # 返回学习率 def step_batch(self): # 批次学习率调整函数 self.iters_batch = 1 # 当前批次迭代次数 if self.iters_batch < self.warmup_iters: rate = self.iters_batch / self.warmup_iters # 计算学习率缩放因子 self.base_lr= self.base_lr * rate # 缩放学习率 return self.base_lr # 返回学习率 else: return None # 如果已经完成热身,返回 None
这段代码是定义了一个名为CosineAnnealingWarmbootingLR的类,其中包含了一些参数和方法。这些参数包括:base_lr(基础学习率)、epochs(训练轮数)、eta_min(最小学习率)、steps(学习率变化步数)、step_scale(学习率变化比例)、lf(学习率变化函数)、batchs(每个批次的大小)、warmup_epoch(预热轮数)和epoch_scale(轮数缩放比例)。需要检查代码是否有错误或异常。
阅读全文