STM32H7 纳秒级别的延时函数
时间: 2024-08-15 17:07:42 浏览: 191
STM32H7系列微控制器提供了高级定时器如RTC(Real-Time Clock)和SysTick等,用于实现纳秒级的精确时间管理。其中,RTC可以提供非常稳定的时钟源,并通过配置其内部的计数器来实现高精度的时间延迟。
对于RTC计时,你可以使用RTC Alarm功能,设置一个报警时间,当达到设定值时会触发中断,然后在中断服务程序中处理延迟任务。另外,如果你需要更即时的操作,可以利用SysTick定时器,它是一个周期性的硬件定时器,可以在每个系统周期(通常1ms)内提供一个时间戳。你可以设置一个循环,每次循环减去预定的延迟时间,直到达到目标。
例如,使用RTC_Alarms API函数`HAL_RTCEx_AlarmConfig(&hrtc, RTC_ALARMPRESCALER_1, ...)`配置好延时时长后,再调用`HAL_RTCEx_SetAlarm(&hrtc, alarm_channel, alarm_time)`设定时间。使用SysTick则可通过读取和更新`NVIC_SYSTick_Callback`中的变量来控制延迟。
相关问题
stm32f103纳秒级延迟函数
STM32F103系列微控制器上,实现纳秒级延迟通常不是通过内建的延迟函数,因为这些函数提供的精度一般不足以达到这样的级别。如果你需要如此精确的时间控制,可以考虑以下几种方法:
1. **硬件计数器**:利用定时器如TIM1、TIM2等的预分频器和捕获功能,配合中断系统,设置一定的周期来实现近似纳秒级别的延时。例如,通过软件更新计数器并在溢出时中断,然后恢复计数器。
2. **延时宏或函数**:尽管库函数提供的延时函数(如`HAL_Delay()`)可能会有固定的最小步长,你可以在循环内部自行调整计数,比如用while循环结合微妙级别(microseconds)的计数来逼近纳秒。
3. **微秒级延时后睡眠**:如果对时间精度要求极高,也可以先获取当前时间,然后设置一个微秒级别的延时,让处理器进入低功耗模式(如WFI或WFE),直到达到所需的总延迟时间。
需要注意的是,在实际应用中,过度依赖纳秒级延时可能会降低系统的实时性和稳定性,因此需要权衡性能需求。同时,嵌入式开发中往往更关注任务调度和响应时间,而不是绝对的延迟值。
stm32cubemx STM32H7配置SYsTIck 纳秒的延时函数
STM32CubeMX 是一款由 ST Microelectronics 开发的集成设计环境工具,它能自动创建基本的 STM32 微控制器应用,简化了系统配置、内存管理、外设初始化等功能,帮助用户快速启动项目。
### 配置 SYsTIck 和纳秒级延时函数
在 STM32 的微处理器中,`SysTick` 是一种定时器,常用于生成周期性的中断事件,通常用于执行一些周期性任务或计数等操作。要在 STM32CubeMX 中设置 `SysTick` 及其纳秒级延时功能,可以按照以下步骤操作:
#### 通过 STM32CubeMX 配置 `SysTick`
1. **打开 STM32CubeMX 并选择目标 STM32 芯片**(例如 STM32H7)以及相应的系列版本。
2. **在项目窗口中选择 `System`** 来编辑系统部分。在这里,你可以找到 `SysTick` 相关的配置选项。
3. **勾选启用 `SysTick` 定时器**。然后可以选择 `Tick` 时间长度和预分频值,这将影响每秒钟的中断次数。通常,使用默认设置即可满足需求。
4. **配置 `SysTick` 作为周期性的中断源**,这通常已经在默认设置中完成。
5. **保存配置**,完成后,STM32CubeMX 将自动生成必要的代码和配置文件。
#### 实现纳秒级延时函数
虽然 `SysTick` 提供的是毫秒级别的中断,但通过循环等待特定次数的 `SysTick` 中断,我们可以模拟出纳秒级别的时间延迟。下面是一个简单的示例代码段来演示如何使用 `SysTick` 进行纳秒级时间延迟:
```c
#include "stm32h7xx_hal.h"
#include "stm32h7xx_hal_msp.h"
// 假定 SysTick 每次中断间隔大约为 0.001 秒
const uint32_t TICKS_PER_SECOND = 1000;
uint32_t delay_ns = 1; // 延迟时间为 1 纳秒
void SystemClock_Config(void);
void DelayNanoseconds(uint32_t ns);
void __attribute__((interrupt("WWDG")))
WWDG_IRQHandler() {
if (delay_ns > 0) {
delay_ns--;
}
}
int main() {
HAL_Init();
SystemClock_Config();
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA | RCC_AHBPeriph_GPIOB | RCC_AHBPeriph_GPIOD,
ENABLE); // 初始化 GPIO 引脚
HAL_NVIC_EnableIRQ(WWDG_IRQn); // 启动 WWDG 中断
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_SET); // 示例 GPIO 控制
while(1) {
DelayNanoseconds(TICKS_PER_SECOND * 1000 * 1000); // 延迟 1 微秒
HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_0);
}
return 0;
}
void DelayNanoseconds(uint32_t ns) {
for (; ns > 0; ns--) {
while (HAL_GetTick() % TICKS_PER_SECOND != 0) {
;
}
}
}
```
此代码首先设置了一个无限循环,在循环内部通过 `DelayNanoseconds()` 函数实现纳秒级的延迟。`DelayNanoseconds()` 函数通过检查当前时间是否等于一个完整的毫秒来决定是否递减延迟计数器 `ns`。
####
阅读全文