flatten transformer代码
时间: 2024-04-25 10:20:28 浏览: 137
transformer代码
5星 · 资源好评率100%
flatten transformer是一种用于自然语言处理任务的模型架构,它基于transformer模型,并在其基础上进行了改进。下面是flatten transformer的代码介绍:
首先,我们需要导入所需的库和模块:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
```
接下来,定义flatten transformer的主要模块,包括Encoder、Decoder和Transformer模块。
1. Encoder模块:
```
class Encoder(nn.Module):
def __init__(self, input_dim, hid_dim, n_layers, n_heads, pf_dim, dropout):
super().__init__()
self.tok_embedding = nn.Embedding(input_dim, hid_dim)
self.pos_embedding = nn.Embedding(max_len, hid_dim)
self.layers = nn.ModuleList([EncoderLayer(hid_dim, n_heads, pf_dim, dropout) for _ in range(n_layers)])
self.dropout = nn.Dropout(dropout)
def forward(self, src, src_mask):
batch_size = src.shape
src_len = src.shape
pos = torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1).to(device)
src = self.dropout((self.tok_embedding(src) * math.sqrt(self.hid_dim)) + self.pos_embedding(pos))
for layer in self.layers:
src = layer(src, src_mask)
return src
```
2. Decoder模块:
```
class Decoder(nn.Module):
def __init__(self, output_dim, hid_dim, n_layers, n_heads, pf_dim, dropout):
super().__init__()
self.tok_embedding = nn.Embedding(output_dim, hid_dim)
self.pos_embedding = nn.Embedding(max_len, hid_dim)
self.layers = nn.ModuleList([DecoderLayer(hid_dim, n_heads, pf_dim, dropout) for _ in range(n_layers)])
self.fc_out = nn.Linear(hid_dim, output_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, trg, enc_src, trg_mask, src_mask):
batch_size = trg.shape
trg_len = trg.shape
pos = torch.arange(0, trg_len).unsqueeze(0).repeat(batch_size, 1).to(device)
trg = self.dropout((self.tok_embedding(trg) * math.sqrt(self.hid_dim)) + self.pos_embedding(pos))
for layer in self.layers:
trg, attention = layer(trg, enc_src, trg_mask, src_mask)
output = self.fc_out(trg)
return output, attention
```
3. Transformer模块:
```
class Transformer(nn.Module):
def __init__(self, encoder, decoder, src_pad_idx, trg_pad_idx):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.src_pad_idx = src_pad_idx
self.trg_pad_idx = trg_pad_idx
def make_src_mask(self, src):
src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)
return src_mask
def make_trg_mask(self, trg):
trg_pad_mask = (trg != self.trg_pad_idx).unsqueeze(1).unsqueeze(3)
trg_len = trg.shape
trg_sub_mask = torch.tril(torch.ones((trg_len, trg_len), device=device)).bool()
trg_mask = trg_pad_mask & trg_sub_mask
return trg_mask
def forward(self, src, trg):
src_mask = self.make_src_mask(src)
trg_mask = self.make_trg_mask(trg)
enc_src = self.encoder(src, src_mask)
output, attention = self.decoder(trg, enc_src, trg_mask, src_mask)
return output, attention
```
以上是flatten transformer的主要代码介绍,其中包括Encoder、Decoder和Transformer模块的定义和前向传播过程。这些模块通过嵌套调用实现了flatten transformer的功能。
阅读全文