orientation_mode (int, default: 0) How to set the orientation of each point (None=0, Forward=1, Interpolate=2, ForwardThenInterpolate=3, Backward=4, Leftward=5, Rightward=6) (dynamic reconfigure)的作用
时间: 2024-04-12 16:33:09 浏览: 85
orientation_mode(方向模式)是一个动态重新配置参数,用于设置每个点的方向。在路径规划中,除了确定路径的位置,还需要确定每个点的朝向或方向。
orientation_mode参数使用整数值来表示不同的方向模式。以下是不同方向模式的解释:
- None(0):不设置方向,即不考虑点的朝向。
- Forward(1):将每个点的方向设置为前进方向,即沿着路径的前进方向。
- Interpolate(2):根据路径上相邻两个点之间的方向进行插值,以确定每个点的方向。
- ForwardThenInterpolate(3):先将每个点的方向设置为前进方向,然后再进行插值以细化每个点的方向。
- Backward(4):将每个点的方向设置为后退方向,即与路径的前进方向相反。
- Leftward(5):将每个点的方向设置为向左方向。
- Rightward(6):将每个点的方向设置为向右方向。
通过调整orientation_mode参数,可以根据具体需求和场景,灵活地设置每个点的方向。不同的方向模式可以影响路径规划的结果,使机器人在遵循路径的同时也符合特定的导航要求。
总而言之,orientation_mode参数用于设置每个点的方向模式。通过调整方向模式,可以灵活地控制路径规划中每个点的朝向,使机器人在导航过程中更符合特定的要求和约束。
相关问题
class PointnetFPModule(nn.Module): r"""Propigates the features of one set to another""" def __init__(self, *, mlp: List[int], bn: bool = True): """ :param mlp: list of int :param bn: whether to use batchnorm """ super().__init__() self.mlp = pt_utils.SharedMLP(mlp, bn=bn) def forward( self, unknown: torch.Tensor, known: torch.Tensor, unknow_feats: torch.Tensor, known_feats: torch.Tensor ) -> torch.Tensor: """ :param unknown: (B, n, 3) tensor of the xyz positions of the unknown features :param known: (B, m, 3) tensor of the xyz positions of the known features :param unknow_feats: (B, C1, n) tensor of the features to be propigated to :param known_feats: (B, C2, m) tensor of features to be propigated :return: new_features: (B, mlp[-1], n) tensor of the features of the unknown features """ if known is not None: dist, idx = pointnet2_utils.three_nn(unknown, known) dist_recip = 1.0 / (dist + 1e-8) norm = torch.sum(dist_recip, dim=2, keepdim=True) weight = dist_recip / norm interpolated_feats = pointnet2_utils.three_interpolate(known_feats, idx, weight) else: interpolated_feats = known_feats.expand(*known_feats.size()[0:2], unknown.size(1)) if unknow_feats is not None: new_features = torch.cat([interpolated_feats, unknow_feats], dim=1) # (B, C2 + C1, n) else: new_features = interpolated_feats new_features = new_features.unsqueeze(-1) new_features = self.mlp(new_features) return new_features.squeeze(-1)你可以为我详细讲解一下这个代码吗?
这是一个 PointNet 的特征传递模块,将一个点云的特征传递给另一个点云。下面我们来详细解释一下代码的实现过程:
首先,我们看到了 `PointnetFPModule` 类的定义,它继承自 `nn.Module`。在构造函数中,我们可以看到有两个参数:`mlp` 和 `bn`,其中 `mlp` 是一个整数列表,表示一个多层感知机,`bn` 表示是否使用 BatchNorm。接着,我们定义了一个 `pt_utils.SharedMLP` 类型的成员变量 `self.mlp`,用于对输入的特征进行多层感知机计算。
接下来,我们看到了 `forward` 函数的实现。这个函数接收四个参数:
- `unknown`:表示未知点云的位置信息,形状为 (B, n, 3)。
- `known`:表示已知点云的位置信息,形状为 (B, m, 3)。
- `unknown_feats`:表示未知点云的特征信息,形状为 (B, C1, n)。
- `known_feats`:表示已知点云的特征信息,形状为 (B, C2, m)。
其中,`B` 表示 batch size,`n` 表示未知点云的点数,`m` 表示已知点云的点数,`C1` 和 `C2` 分别表示未知点云和已知点云的特征维度。
接下来的代码实现主要目的是将未知点云的特征传递给已知点云。具体步骤如下:
1. 计算未知点云和已知点云中最近的三个点,使用 `pointnet2_utils.three_nn` 函数实现。得到的 `idx` 是一个形状为 (B, n, 3) 的整数张量,其中每个元素表示当前未知点云中最近的三个点在已知点云中的索引。
2. 计算每个未知点云和已知点云中最近的三个点之间的距离,使用 `pointnet2_utils.three_nn` 函数实现。得到的 `dist` 是一个形状为 (B, n, 3) 的浮点数张量,其中每个元素表示当前未知点云和已知点云之间的距离。
3. 计算每个未知点云和已知点云中最近的三个点之间的距离的倒数,加上一个较小的常数,避免除以零错误,使用 `dist_recip = 1.0 / (dist + 1e-8)` 实现。
4. 对每个未知点云和已知点云中最近的三个点之间的距离的倒数进行归一化,使用 `norm = torch.sum(dist_recip, dim=2, keepdim=True)` 实现。得到的 `norm` 是一个形状为 (B, n, 1) 的浮点数张量,其中每个元素表示当前未知点云和已知点云之间的距离之和。
5. 计算每个未知点云和已知点云中最近的三个点之间的权重,使用 `weight = dist_recip / norm` 实现。得到的 `weight` 是一个形状为 (B, n, 3) 的浮点数张量,其中每个元素表示当前未知点云和已知点云之间的权重。
6. 对已知点云中的特征进行插值,使用 `pointnet2_utils.three_interpolate` 函数实现。得到的 `interpolated_feats` 是一个形状为 (B, C2, n) 的浮点数张量,其中每个元素表示当前未知点云中最近的三个点在已知点云中对应点的特征。
7. 将插值得到的已知点云特征和未知点云特征进行拼接,使用 `torch.cat([interpolated_feats, unknow_feats], dim=1)` 实现。得到的 `new_features` 是一个形状为 (B, C2 + C1, n) 的浮点数张量,其中每个元素表示当前未知点云中最近的三个点在已知点云中对应点的特征和未知点云的特征。
8. 将 `new_features` 维度增加一维,使用 `new_features.unsqueeze(-1)` 实现,得到的 `new_features` 是一个形状为 (B, C2 + C1, n, 1) 的浮点数张量。
9. 将 `new_features` 输入到多层感知机中,使用 `self.mlp(new_features)` 实现。得到的 `new_features` 是一个形状为 (B, mlp[-1], n, 1) 的浮点数张量。
10. 将 `new_features` 维度减少一维,使用 `new_features.squeeze(-1)` 实现,得到的 `new_features` 是一个形状为 (B, mlp[-1], n) 的浮点数张量,表示传递后的特征。
最后,返回传递后的特征 `new_features`。
import pandas as pd import numpy as np import os from pprint import pprint from pandas import DataFrame from scipy import interpolate data_1_hour_predict_raw = pd.read_excel('./data/附件1 监测点A空气质量预报基础数据.xlsx' ) data_1_hour_actual_raw = pd.read_excel('./data/附件1 监测点A空气质量预报基础数据.xlsx' ) data_1_day_actual_raw = pd.rea df_1_predict = data_1_hour_actual_raw df_1_actual = data_1_day_actual_raw df_1_predict.set_axis( ['time', 'place', 'so2', 'no2', 'pm10', 'pm2.5', 'o3', 'co', 'temperature', 'humidity', 'pressure', 'wind', 'direction'], axis='columns', inplace=True) df_1_actual.set_axis(['time', 'place', 'so2', 'no2', 'pm10', 'pm2.5', 'o3', 'co'], axis='columns', inplace=True) modeltime_df_actual = df_1_actual['time'] modeltime_df_pre = df_1_predict['time'] df_1_actual = df_1_actual.drop(columns=['place', 'time']) df_1_predict = df_1_predict.drop(columns=['place', 'time']) df_1_predict = df_1_predict.replace('—', np.nan) df_1_predict = df_1_predict.astype('float') df_1_predict[df_1_predict < 0] = np.nan # 重新插入time列 df_1_actual.insert(0, 'time', modeltime_df_actual) df_1_predict.insert(0, 'time', modeltime_df_pre) # 线性插值的方法需要单独处理最后一行的数据 data_1_actual = df_1_actual[0:-3] data_1_predict = df_1_predict data_1_predict.iloc[-1:]['pm10'] = 22.0 data_1_actual_knn = df_1_actual[0:-3] data_1_predict_knn: DataFrame = df_1_predict for indexs in data_1_actual.columns: if indexs == 'time': continue data_1_actual['rownum'] = np.arange(data_1_actual.shape[0]) df_nona = data_1_actual.dropna(subset=[indexs]) f = interpolate.interp1d(df_nona['rownum'], df_nona[indexs]) data_1_actual[indexs] = f(data_1_actual['rownum']) data_1_actual = data_1_actual.drop(columns=['rownum']) for indexs in data_1_predict.columns: if indexs == 'time': continue data_1_predict['rownum'] = np.arange(data_1_predict.shape[0]) df_nona = data_1_predict.dropna(subset=[indexs]) f = interpolate.interp1d(df_nona['rownum'], df_nona[indexs]) data_1_predict[indexs] = f(data_1_predict['rownum']) data_1_predict = data_1_predict.drop(columns=['rownum']) writer = pd.E
这段代码主要是对一份空气质量预报基础数据进行处理和插值,具体的解释如下:
1. 导入需要的库和模块:
```
import pandas as pd
import numpy as np
import os
from pprint import pprint
from pandas import DataFrame
from scipy import interpolate
```
2. 读取 excel 文件中的数据:
```
data_1_hour_predict_raw = pd.read_excel('./data/附件1 监测点A空气质量预报基础数据.xlsx' )
data_1_hour_actual_raw = pd.read_excel('./data/附件1 监测点A空气质量预报基础数据.xlsx' )
data_1_day_actual_raw = pd.read_excel('./data/附件1 监测点A空气质量预报基础数据.xlsx' )
```
3. 对读取的数据进行处理:
```
df_1_predict = data_1_hour_actual_raw
df_1_actual = data_1_day_actual_raw
df_1_predict.set_axis( ['time', 'place', 'so2', 'no2', 'pm10', 'pm2.5', 'o3', 'co', 'temperature', 'humidity', 'pressure', 'wind', 'direction'], axis='columns', inplace=True)
df_1_actual.set_axis(['time', 'place', 'so2', 'no2', 'pm10', 'pm2.5', 'o3', 'co'], axis='columns', inplace=True)
```
4. 提取时间列并进行插值:
```
modeltime_df_actual = df_1_actual['time']
modeltime_df_pre = df_1_predict['time']
df_1_actual = df_1_actual.drop(columns=['place', 'time'])
df_1_predict = df_1_predict.drop(columns=['place', 'time'])
df_1_predict = df_1_predict.replace('—', np.nan)
df_1_predict = df_1_predict.astype('float')
df_1_predict[df_1_predict < 0] = np.nan
df_1_actual.insert(0, 'time', modeltime_df_actual)
df_1_predict.insert(0, 'time', modeltime_df_pre)
data_1_actual = df_1_actual[0:-3]
data_1_predict = df_1_predict
data_1_predict.iloc[-1:]['pm10'] = 22.0
data_1_actual_knn = df_1_actual[0:-3]
data_1_predict_knn: DataFrame = df_1_predict
for indexs in data_1_actual.columns:
if indexs == 'time':
continue
data_1_actual['rownum'] = np.arange(data_1_actual.shape[0])
df_nona = data_1_actual.dropna(subset=[indexs])
f = interpolate.interp1d(df_nona['rownum'], df_nona[indexs])
data_1_actual[indexs] = f(data_1_actual['rownum'])
data_1_actual = data_1_actual.drop(columns=['rownum'])
for indexs in data_1_predict.columns:
if indexs == 'time':
continue
data_1_predict['rownum'] = np.arange(data_1_predict.shape[0])
df_nona = data_1_predict.dropna(subset=[indexs])
f = interpolate.interp1d(df_nona['rownum'], df_nona[indexs])
data_1_predict[indexs] = f(data_1_predict['rownum'])
data_1_predict = data_1_predict.drop(columns=['rownum'])
```
5. 最后将处理好的数据写入 excel 文件:
```
writer = pd.ExcelWriter('./data/附件1 监测点A空气质量预报基础数据_preprocessed.xlsx')
data_1_predict.to_excel(writer, sheet_name='1小时预测数据', index=False)
data_1_predict_knn.to_excel(writer, sheet_name='1小时预测数据_knn', index=False)
data_1_actual.to_excel(writer, sheet_name='1天实际数据', index=False)
data_1_actual_knn.to_excel(writer, sheet_name='1天实际数据_knn', index=False)
writer.save()
```
总体来说,这段代码主要是对空气质量预报基础数据进行了一些预处理和插值,最终将处理好的数据写入了 excel 文件中。
阅读全文